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Abstract 

 

The main objective of this study is to investigate the benefit of updating 

both hydrological and hydrodynamic model states for better streamflow 

forecasting. A data assimilation scheme based on the Ensemble Transform 

Kalman Filter (ETKF) was implemented in order to assimilate observed 

discharge. Four precipitation products (rain gauge as well as three satellite 

rainfall products) were checked for suitability with respect to rainfall-runoff 

modelling. The hydrological-hydrodynamic model, MIKE 11/NAM was 

used for rainfall-runoff as well as river modelling. The upper Murrumbidgee 

catchment in Australia was chosen as a case-study; major peak events were 

identified at Gundagai, (a downstream gauging station and an interesting 

location in terms of flood risk management), to validate the performance of 

the data assimilation. Two major data assimilation methods were 

implemented; Firstly hydrodynamic states (discharge and water level) were 

updated along the river and the performance of the data assimilation was 

tested by issuing a sequence of simulated streamflow forecasts. Secondly, 

both the hydrodynamic and hydrological model states were updated and the 

corresponding forecasts were verified. The streamflow simulation from the 

calibrated model (open loop run) was considered as a reference/benchmark 

forecast. Sensitivity of the ETKF was also studied with respect to several 

parameters such as model uncertainty, observation uncertainty as well as 

half-time constant of the time correlated error. As a result appropriate filter 

parameters were selected for a specific sub-catchment. Ensemble size 

sensitivity analysis was also done in order to find the optimal ensemble size 

that balances the trade-off between forecast accuracy and computational 

expense.  

 

It was found that the satellite rainfall products with daily temporal 

resolution can generally represent catchment rainfall-runoff process at large 

and could be used for large-scale hydrological modelling, however, it was 

not possible to simulate important peak events and thus the daily satellite 

rainfall products were rendered as unsuitable for flood forecasting/reservoir 

management system for the Murrumbidgee catchment. Hence, the rain 

gauge precipitation data was used for data assimilation and forecast 

experiments for the rest of the study. Sensitivity analysis results showed that 

an optimal ensemble size of 20 was appropriate for the analysis. More 

importantly, this study demonstrated that there is a significant advantage in 

updating both hydrological and hydrodynamic states. Looking at a 48 hr 

lead time alone, average RMSE and CRPS skill scores of the forecasts based 

on the combined update are 23% (RMSES) and 18% (CRPSS) more skilful 

than the forecasts which are based on hydrodynamic states update alone.  

 

Keywords: Data Assimilation, MIKE 11, Ensemble, Kalman Filter, TRMM, 

CHIRPS, PERSIANN  
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1. Introduction   

Hydrological-hydrodynamic modelling is crucial for water resources management (e.g., 

reservoir management, flood control and drought management). However, the accuracy 

and reliability of hydrological and hydrodynamic models are oftentimes in question 

owing to the uncertainties inherent to model parameters, model forcing inputs, and 

model structures. In order to tackle this problem, data assimilation techniques that 

merge models and observations by jointly considering the uncertainties of each entity 

have become commonplace in hydrology.  

 

Streamflow forecast quality depends on how good one can estimate the initial state of 

the catchment as well as the river.  Initial states can be estimated with a reasonable 

accuracy by implementing data assimilation techniques whereby models are merged 

with observations by appropriately considering the uncertainty in each entity. 

Hydrologic models are not perfect since they simplify the real world processes; there is 

usually an error in the mathematical approximations of the governing processes. 

Besides model predictions will diverge from reality as time progresses; observations are 

not accurate either due to errors from measuring devices and representation errors 

(Madsen et al., 2006). Hence, there is a need to use models and observations 

synergistically to obtain optimum estimation of the model states. Data assimilation 

corrects forecasts by introducing new information observed from the environment 

(Guzzi, 2015).  

 

There are several data assimilation techniques, however Kalman Filter and its variants 

are the most well-known (Chen et al., 2013). The Kalman Filter is oftentimes used to 

adjust model simulated values toward observed values keeping the system dynamics 

consistent (Butts et al., 2005). Ensemble Kalman filtering technique, which is 

implemented in this study uses a member of ensembles to represent the probability 

distribution of the model state and performs stochastic analysis on the ensemble (refer 

2.3.1).  

 

The potential of data assimilation in hydrology has been demonstrated by several 

studies; (Clark et al., 2008) used the Ensemble Kalman filter (EnKF) to update multiple 

model states such as soil storage, and surface storage by assimilating streamflow. (Xie 

et al., 2010) implemented EnKF to the Soil and Water Assessment Tool (SWAT) in 

order to update several states and parameters such as runoff and groundwater flow. 

(Madsen et al., 2003) showed that flood forecasting skills improved significantly after 

assimilating observed water levels and fluxes in the MIKE 11 Flood Forecasting system.  

 

The objectives of this study are the following: 

 To investigate the suitability of remotely sensed precipitation products for 

rainfall-runoff modelling and data assimilation as an alternative to rain gauge 

precipitation data. 

 To carry out sensitivity analysis to find optimal filter parameters and optimal 

ensemble size that represent modelling and observation uncertainty 

appropriately such that forecast errors are minimized.  



Data Assimilation in Hydrodynamic-Hydrological Forecast Systems 
 

  

Michael Getachew Tadesse 4 

 

 To investigate the effect of a combined hydrodynamic-hydrological model states 

update on the improvement of streamflow prediction for the upstream part of 

Murrumbidgee catchment, Australia. 

This study aims to address the following research questions: 

 What is the significance of using remotely sensed precipitation products instead 

of in-situ precipitation products in rainfall-runoff modelling as well as 

streamflow forecast improvement? 

 How sensitive is the data assimilation technique (Ensemble Transform Kalman 

filter) to the data assimilation configuration parameters? [How does the change 

in filter configuration impact the forecast?] 

 How does ensemble size affect the updating process and what is the optimal 

ensemble size? 

 What are the benefits of updating hydrological and hydrodynamic model states 

independently and in a combined manner? Is there an improvement in 

streamflow forecast? 

The novelty of this research lies on the implementation of a combined hydrodynamic-

hydrological model states updating for the Murrumbidgee catchment. Operational 

forecasts issued for the Murrumbidgee catchment employ data assimilation techniques 

to update only the hydrodynamic states (discharge and water level). The internal 

catchment states that drive the hydrodynamic process are not being updated. However, 

there is now a need to incorporate the hydrological model states updating in the data 

assimilation.  By doing so it is anticipated that streamflow forecast improvements will 

be achieved. 

 

Ensemble Transform Kalman filter, a deterministic variant of Kalman filter was used 

with the MIKE 11 model (both rainfall-runoff and river model). Firstly, several 

precipitation products were investigated including rain gauge precipitation data for their 

capability to simulate the rainfall-runoff processes in the catchment. After selecting the 

most appropriate precipitation product, the hydrological model states of selected sub-

catchments were updated by implementing data assimilation. In this analysis, only the 

catchment states are updated. Following this, a sensitivity analysis was carried out to 

find the appropriate filter parameters, which also includes finding the optimum 

ensemble size for the analysis. Using the filter parameters obtained from the sensitivity 

analysis, a hydrodynamic model states update was done which updated only the model 

states in the river (discharge and water level). Finally a combined hydrological-

hydrodynamic model states update was done in order to update the catchment as well as 

the river states. Performance of the data assimilation in all the above analysis was tested 

by simulating a series of forecasts which were verified by the chosen verification 

methods that will be described in 2.4.  

 

Overall, the study is organized as follows; chapter 2 presents the relevant literature in 

data assimilation, the case study and data availability including model setup will be 

discussed in chapter 3 and 4 respectively and the research methodology and major 

findings follow in chapters 5 and 6.  
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2. Literature Review 

River operation is a complex process that is needed to cater for water demands of 

households, industry, hydropower, navigation, and environmental requirements. In 

order to meet these demands, river operators need to take into account geometry and 

physical characteristics of rivers, inflows and outflows from reservoirs, weather 

forecasts, and water orders which need to be accounted for in several numerical models 

so that optimal reservoir releases are issued (Munier et al., 2015). However the models 

that are used are subject to a lot of errors arising from model structure, model 

parameters, initial conditions and hydrometeorologic forcings. Data assimilation which 

is the focus of this study, is one of the solutions among others that reduces the impacts 

of errors by assimilating information from observations in order to correct model errors 

(Munier et al., 2015).  

Hydrological models even after calibration, could imperfectly predict streamflow 

evolution. Therefore, before they can be used on forecasting mode, it is recommended 

to put them in agreement with available observations (Aubert et al., 2003). Data 

assimilation (DA) is an approach that optimally merges information from model 

simulations with observations through appropriate uncertainty modelling towards an 

accurate prediction and quantification of uncertainty (Y.Liu et al., 2012). DA is 

concerned with three fundamental problems, viz. state updating, parameter estimation 

and error updating (Y.Liu et al., 2012). State updating is where observed data such as 

water levels, discharge, snow depth etc. are assimilated into lumped or distributed 

hydrologic or hydraulic models to update the models’ dynamic states. Whereas, 

parameter estimation is the optimization of model parameters using observed data; and 

error updating revises the prediction of error models that represent the difference 

between hydrologic forecasts and observations. For state updating a state-space model 

approach is usually used which can be solved by techniques like filtering or smoothing. 

This study is limited to the state updating part of data assimilation; several model states, 

both catchment and hydraulic, will be updated and the update will be verified by 

statistical analysis of consecutive forecasts. 

Data assimilation takes advantage of both imperfect models and limited observations by 

considering the uncertainties in both in order to provide a more accurate prediction 

(Zhang et al., 2016). It improves the accuracy of forecasts by  making use of 

observations up to the time of forecast, in a way providing the best initial conditions and 

boundary conditions for a forecast (Katrine et al., 1994). The wetness of a catchment 

prior to a rainfall event is for instance, a vital information that determines the outcome 

of the event in terms of runoff. Thus, a flood forecasting system based on a rainfall-

runoff model entails an accurate estimation of the initial catchment wetness in order to 

make a reliable flood forecast (Brocca et al., 2012). DA is an important component of 

an operational forecasting system that improves the initialization of a forecast model at 

the time of forecast and thereby improves forecast accuracy (Madsen et al., n.d.). 

Considering the adverse impact of floods on both lives and property, the need to reduce 

forecast uncertainty is ever growing. According to WMO, data assimilation is identified 

as an essential requirement for accurate flood forecasting [WMO, 1992]. 

When hydrological data assimilation is implemented, the usual trend is to update the 

model simulated streamflow by assimilating the measurements of river discharge and/or 

water levels. This methodology allows for improvement of forecasts over a period 
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corresponding to the travel time it takes for the flood wave to propagate through the 

river. However, the uncertainty in streamflow forecast can be traced back to the 

meteorological boundary conditions which are believed to be the main sources of 

uncertainty when it comes to flood forecasting. The uncertainty in the meteorological 

boundary conditions such as precipitation further generate uncertainties both directly on 

the simulated runoff and indirectly on the actual catchment wetness prior to 

precipitation(Katrine et al., 1994). 

2.1 Uncertainty in hydrological models and forecasts 

Despite the growing development in computational power and distributed hydrological 

modelling, it’s still challenging to adequately quantify and reduce the uncertainty 

related to hydrological predictions (Yuqiong Liu et al., 2007). Evidently, understanding 

of the hydrological processes increased with the evolution of hydrologic models from 

lumped to the complex distributed ones. However, the need to deal with the uncertainty 

of the models themselves has also been increasing. Thus, it has now become apparent 

that the proper consideration of uncertainty in hydrologic predictions is very important 

both for research and operational modelling (Wagener et al., 2003). In order to 

appropriately address uncertainty in hydrologic modelling and prediction, one has to 

understand, quantify and reduce uncertainty.  

 

A classical way of quantifying uncertainty, as presented in different literature, is 

representing the predictions in terms of probabilistic distribution which is obtained by 

performing a probabilistic modelling instead of a deterministic one (Yuqiong Liu et al., 

2007) for instance by producing an ensemble of hydrologic predictions as opposed to a 

deterministic prediction. An ensemble is a collection of model trajectories (Bröcker, 

2012) generated by slightly tweaking the initial conditions as well as by using perturbed 

model equations. These varied initial conditions and perturbed equations are introduced 

to represent the uncertainty about the current state of the variable (i.e. catchment). 

However, the high non-linearity of a hydrologic system and the different interactions 

between model components make accurate probabilistic distribution of the system a 

daunting task. Thus, linear assumptions are made in order to simplify the uncertainty 

representation. Gaussian distributions are commonly used to quantify the different 

sources of uncertainty (Yuqiong Liu et al., 2007). Background uncertainty comes from 

the uncertainty in the initial conditions from the previous analysis and from the “model 

error” that represents the discrepancy between the dynamics of the model and that of the 

actual system dynamics (Hunt et al., 2007) In addition, in hydrological forecast systems 

there is uncertainty originating from model forcing forecasts such as precipitation 

forecasts.   

 

In order to quantify the uncertainty in hydrologic outputs, ensemble methods (sampling 

methods) have become the state-of-the art in which samples are taken from a prior 

assumed error probability distribution function and the model will be propagated in time. 

By taking adequate sample of predictions and applying statistics on the ensemble, the 

uncertainty in the model outputs can be quantified (Yuqiong Liu et al., 2007). The 

uncertainty of the initial state estimates is represented by the initial spread of the 

ensemble members. In the method outlined by Evensen (2003), ensemble members are 

generated by taking an initial best-guess of the states, and then adding perturbations in 

the form of random correlated fields to each ensemble member (Turner et al., n.d.).    
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There are three basic remedies for the inherent uncertainty problem rooted in hydrologic 

modelling and prediction. The first one is to acquire a higher quality hydrologic data 

which incorporate advanced measuring techniques; the second is advancing hydrologic 

models so that the physical system can be represented by the models more accurately 

and the last one, which is of interest to this study is the application of efficient and 

effective techniques that can extract and assimilate information from available data via 

the model identification and prediction processes (Yuqiong Liu et al., 2007).  

 

Data assimilation combines available observations with prior knowledge (which is the 

representation of the physical system by the model) in order that the true state of the 

system can be estimated along with its estimation uncertainty (Katzfuss et al., 2016). An 

important and non-trivial task is reasonably quantifying the uncertainties in the different 

sources and feeding them to the data assimilation framework in order to reduce 

uncertainty in hydrologic prediction. The data assimilation algorithm, very often 

requires the specification of errors of the major sources of uncertainty. (Yuqiong Liu et 

al., 2007). The assimilation estimates will be close to observations at times and 

locations for which accurate observations are at hand, whereas at times and locations for 

which there are no available observations (or of low quality) assimilation estimates will 

be close to the model solution (Reichle et al., 2008). 

 

2.2 Precipitation data for Data Assimilation   

Data assimilation uses model results and observations synergistically in order to provide 

more accurate state estimation. The two major inputs to the data assimilation algorithm 

among others, are model forcing and observation. The data assimilation algorithm 

provides state estimate by considering the uncertainty in each of the above entities 

Precipitation is the most important component of model forcing and it drives the 

rainfall-runoff process determining the uncertainty in streamflow. It is also a major 

input for data assimilation. Observed discharge is usually used to calibrate a rainfall-

runoff/river model and it is also a prognostic variable in data assimilation meaning 

results of data assimilation are compared to the observed discharge for validation. 

Hence, the quality of hydrologic data used in hydrological/hydrodynamic models 

influences the outputs of data assimilation significantly. 

 

Precipitation is one of the most important constituents of hydrological model forcing 

and its quality plays a major role in the reliability of model simulations (Kneis et al., 

2014) (Xing Liu et al., 2015). Accurate precipitation data is required for a rainfall-

runoff modelling; since precipitation is the main driver for streamflow, the inherent 

uncertainty in the precipitation forcing highly influences the efficiency of assimilating 

the streamflow observations (Maggioni et al., 2017). However, due to its spatial and 

temporal variability, precipitation remains to be a difficult meteorological component to 

quantify accurately. Inaccuracy in precipitation estimation has an adverse effect on 

streamflow estimation and prediction bringing large uncertainty. There are three ways 

how a precipitation can be estimated; gauge observations, meteorological radar 

observations and satellite observations (Ashouri et al., 2014). In remote and 

mountainous regions, it is difficult to obtain reliable rainfall estimates from gauges or 

radars owing to sparse distribution of gauges and beam blockage effects especially in 

extreme events. Besides, the precipitation measurements from gauges are subject to 

device malfunction errors, human errors, and data transmission mishaps (Kneis et al., 
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2014). Thus implementing hydrological modelling and prediction with such unreliable 

rainfall estimate could propagate the inherent meteorological uncertainty giving rise to 

unreliable streamflow simulation and prediction.  Satellite rainfall estimates have a 

better spatial coverage than gauges, which allows for a reliable streamflow estimation 

and prediction. In light of this, the use of satellite rainfall estimates comes in handy for 

streamflow simulation and prediction (Xiaomang Liu et al., 2017). It has become 

commonplace recently, to use satellite precipitation products such as TRMM, CHIRPS 

and PERSIANN as an alternative precipitation products instead of in-situ rainfall 

estimates.  

 

The Tropical Rainfall Measuring Mission (TRMM), is a joint mission of NASA and the 

Japanese Aerospace Exploration Agency (JAXA) that was launched in 1997 to study 

rainfall for weather and climate research (NASA, 2015). It became operational on 1998 

and covers the tropical zone, between 500 N and 500 S with a spatial resolution of 

0.250(Arias-Hidalgo et al., 2013). TRMM has several variants; 3B40, 3B41, 3B42 etc. 

This study uses the TRMM 3B42 RT which has the highest spatial resolution (0.250 x 

0.250). 

 

The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) is a quasi-

global, daily, high resolution (0.050) precipitation dataset with more than 30 years 

precipitation data covering the 500 S to 500 N latitudes. It was developed by the United 

States Geological Survey (USGS) Earth Resources Observation and Science Center and 

the University of California Santa Barbara Climate Hazards Group (Kimani, 2017). It 

uses the TRMM multi-satellite precipitation analysis version 7 in order to calibrate 

global Cold Cloud Duration (CCD) rainfall estimates (Funk et al., 2015). It merges 

remotely sensed precipitation with in-situ station data using a modified inverse distance 

weighted algorithm. 

 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks – Cloud Classification System (PERSIANN-CCS) is a satellite rainfall 

estimate of finer spatial resolution (0.040 x 0.040) extracted from infrared geostationary 

satellite imagery (Hong et al., 2007) covering the 500 S to 500 N latitudes available 

since the year 2003. It uses artificial neural networks to find the relationships between 

infrared and precipitation estimates from several microwave products (Behrangi et al., 

2014).    

 

2.3 Data Assimilation Algorithms 

In operational hydrologic forecasting, it is customary to adjust the model forcings, 

model states and in certain cases, model parameters in order to account for errors in the 

initial conditions, parameters and structure of hydrologic models based on stream flow 

observations (Seo et al., 2009). Data assimilation makes use of additional information 

obtained from satellite or in-situ measurements in order to improve model results. The 

additional information can be used to modify input variables, state variables or even the 

parameters that describe the physical properties of the model as depicted in Figure 1. 

Generally the system is updated at the state and parameter level such that the model is 

optimized leading to an optimal simulation. Therefore, by optimizing the system at time 

step t, the system will simulate better outputs at the following time step t+1.  
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Figure 1: Different updating (data assimilation) methodologies. Adapted from (Refsgaard, 1997) 

 

Several DA techniques are available and can be categorised depending on the variables 

that are updated in the assimilation process, namely input variables, model states, model 

parameters, and output variables. In real-time applications, sequential or filtering 

procedures are implemented for state-updating and the most common technique in this 

group is the Kalman Filter (KF) (Madsen et al., 2003). Filtering is the process in which 

the best estimate of a state is computed from noisy data amounts (Kleeman, 1996). 

Kalman filter is a set of mathematical equations that recursively estimates the state of a 

process in such a way that the mean of the squared error is minimized(Welch et al., 

2006). The main benefit of the KF in comparison to other DA techniques is that during 

the updating process, it considers model as well as data uncertainties and provides an 

estimate of the model prediction uncertainty (Madsen et al., 2003).  

 

Kalman filter assumes a linearity of the error growth and normality of error distribution. 

The background error covariances influence the magnitude of adjustment to the 

observation. When the background errors, the adjustment draws more to the observation 

(T. M. Hamill, 2006).  The Kalman filter operates in two distinct stages; forecast stage 

and analysis stage. In the former one, the background state of the system is propagated 

forward in time by the model until the time of observation. In the latter stage, 

assimilation of the observation is carried out into the forecast state by apportioning the 

ration of errors in the background state and in the observation (Petrie, 2008). The 

equations related to Kalman filter are listed below in this chapter.  

 

Considering a model and describing it in a deterministic discrete-time dynamic system 

setting (Deliu et al., 2014); 

 

𝑋𝑘+1 = Φ(𝑋𝑘, 𝑈𝑘)    (1) 

𝑍𝑘 = 𝐶𝑘𝑋𝑘     (2) 

 

𝑋𝑘 represents the state variables of the system at time step k (for instance, water levels, 

discharge), 𝑈𝑘  – forcing of the system (boundaries) and Φ(. ) denotes the numerical 

scheme used to solve the equations in order to propagate the model from time step k to 

k+1. The second equation describes the measurement vector (𝑍𝑘) which is a function of 

𝐶𝑘 (a matrix which describes the relation between measurements and state variables). 

As explained in the previous paragraph,  the data assimilation process consists of two 

steps. The first step is to issue a forecast as shown by equation 3 and then the observed 

data is merged with the forecast in order to provide an updated state also called analysis 

state. The updated state is formulated by the linear combination of the observed data 

and the model.   
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𝑋𝑓
𝑘 = Φ(𝑋𝑎

𝑘−1, 𝑈𝑘)   (3) 

𝑋𝑎
𝑘 = 𝑋𝑓

𝑘 + 𝐺𝑘(𝑍𝑘 − 𝐶𝑘𝑋𝑓
𝑘 ) (4) 

 

𝑋𝑓
𝑘  denotes the forecast state vector, 𝐺𝑘  is a matrix of weighting that considers the 

relative uncertainties of the model dynamics as well as the observations and it takes into 

account the correlations between state variables and observations.  𝑍𝑘 −  𝐶𝑘𝑋𝑓 

represents the innovation vector which includes the differences between the 

measurements and their respective model forecasted values.  

 

The Kalman filter is founded on the stochastic formulation of the model and the 

measurement; 

 

𝑋𝑘+1 = Φ(𝑋𝑘, 𝑈𝑘 + 𝜀𝑘)  (5) 

𝑍𝑘 = 𝐶𝑘𝑋𝑘 +  𝜂𝑘   (6) 

 

ε𝑘 is a stochastic element that denotes the different types of model error, in other words 

the uncertainty of the modelled system whereas 𝜂𝑘  is the random observation error 

vector with zero mean and covariance matrix Rk. Model forecast uncertainty is 

designated by the covariance error matrix 𝑃𝑓
𝑘 and the Kalman gain which is used in the 

update is computed as in equation 7. The Kalman gain (𝐺𝑘 ) describes the weight 

assigned to the model forecasts as well as the measurements depending on the 

uncertainties of each. It also shows the correlation between the diagnostic state variable 

(the measured state variable for instance discharge) and the model state variables that 

need to be updated (Madsen et al., 2007). The updated covariance follows in equation 8 

(Madsen et al., 2003). This is based on the assumption that the model is linear and 

measurement errors are white noise processes with known covariance matrices in which 

case the Kalman filter is the best linear unbiased estimator (Ridler et al., 2014).  

 

𝐺𝑘 = 𝑃𝑓
𝑘𝐶𝑇

𝑘(𝐶𝑘𝑃𝑓
𝑘𝐶𝑇

𝑘 + 𝑅𝑘)−1 (7) 

𝑃𝑎
𝑘 = 𝑃𝑓

𝑘 −  𝐺𝑘𝐶𝑘𝑃𝑓
𝑘  (8) 

 

The computation of the covariance matrix, 𝑃𝑓
𝑘, is computationally expensive and thus 

makes the filtering process infeasible for real-time applications especially when the 

model is nonlinear. Therefore, different approximations of the Kalman filter have been 

developed the most popular of which is the ensemble representation of the error 

covariance matrix 𝑃𝑓
𝑘 (Ridler et al., 2014). 

2.3.1 Ensemble Kalman Filter (EnKF) 

Though the classical Kalman filter gives a comprehensive solution for state estimation 

of linear systems based on Gaussian noise, main interest lies in state estimation of 

nonlinear systems since hydrological systems are nonlinear.  Even though rigorous 

solutions were introduced to tackle nonlinear problems, oftentimes these methods were 

either narrow in applicability or computationally expensive (Gillijns et al., 2006). Ever 

since its introduction by Evensen in 1994, the Ensemble Kalman Filter has been tested 

and applied over several studies and it has become popular due to its simple formulation 

and ease of implementation (Geir Evensen, 2003).  
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Figure 2: EnKF Algorithm. Adapted from (Jo et al., 2016) 

 

The Ensemble Kalman filter is an approximation of the classical Kalman filter in which 

the probabilistic distribution of a model state is represented by a sample from a 

distribution (Stroud, 2015). An ensemble of vectors that approximate the state 

distribution is stored, propagated and updated by EnKF. This allows for dimension 

reduction in a way that a small ensemble is propagated instead of the full error 

covariance matrix. (Katzfuss et al., 2016). Figure 2 outlines the major steps used in 

EnKF implementation. The assumption here is that the ensemble mean is considered to 

be the best estimate whereas the ensemble spread around the mean defines the error in 

the ensemble mean (Geir; Evensen, 2009).  

 

In EnKF, the stochastic model equation shown in equation 5 is represented by an 

ensemble of state vectors. During model forecast, these states are forced with model 

errors and propagated in time according to model dynamics. This allows for the 

estimation of the covariance error 𝑃𝑓 . The Kalman gain is also calculated using 

equation 7. During the update step, each state vector is updated with the equations 

represented in equation 4.  

 

2.3.2 Ensemble Transform Kalman Filter (ETKF) 

ETKF was used for this study and the following description of ETKF is based on the 

works of (Ridler et al., 2014; Zhang et al., 2016). 

 

ETKF is deterministic and computationally efficient in a way that it does not require the 

generation of the full error covariance matrix (Rasmussen et al., 2015). The probability 

density of the model state is approximated by a finite number m of ensemble in such a 
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way that     X = [x1, x2… xm]. These ensemble members are forced with a system noise 

that is randomly generated and propagated through the model. Accordingly the forecast 

error covariance can be calculated from the sample covariance of the ensemble 

members. This quantifies the accuracy of the state estimate. 

𝐏𝐟 =  (𝐦 − 𝟏)−𝟏𝐀𝐟(𝐀𝐟)𝐓    (9) 

Where 𝑨𝒇 represents a matrix of ensemble perturbations, or anomalies,  

𝐀𝐟 = [𝐱𝐟𝟏 − 𝐗𝐟 ,  𝐱𝐟𝟐 − 𝐗𝐟, … , 𝐱𝐟𝐦 − 𝐗𝐟]  (10) 

And 𝑿𝒇  is the ensemble mean. The analysed state mean and the analysed error 

covariance are computed as follows just after assimilation: 

𝐗𝐚 = 𝐗𝐟 + 𝐊(𝐘 − 𝐇𝐗𝐟 )    (11) 

𝐏𝐚 = (𝐈 − 𝐊𝐇)𝐏𝐟     (12) 

Where the superscript a stands for “analysed”, and K represents the Kalman gain which 

is computed as follows: 

𝐊 =  𝐏𝐟𝐇𝐓(𝐇𝐏𝐟𝐇𝐓 + 𝐑)−𝟏    (13) 

Where R represents the observation error covariance. The ensemble mean and the 

ensemble anomalies are updated based on the transform matrix T: 

𝐀𝐚 =  𝐀𝐟𝐓      (14) 

𝐓 =  𝐓𝐬𝐔      (15) 

𝐓𝐬 =  [𝐈 +  
𝟏

𝐦−𝟏
(𝐇𝐀𝐟)𝐓𝐑−𝟏𝐇𝐀𝐟]

−𝟏/𝟐

   (16) 

U denotes an arbitrary orthonormal matrix and the solution to 𝐓𝐬 is symmetric. 

2.4 Verification Methods 

Discrepancies between model simulated results and observations can be quantified 

using several verification tools. Generally there are two categories of verification; 

verification for deterministic simulations and verification for ensemble simulations. In 

both categories, the following notations were used.  𝑌𝑖
𝑜𝑏𝑠 represents the observed value, 

where as 𝑌𝑖
𝑠𝑖𝑚 represents the simulated or forecasted value, and 𝑌𝑖

𝑚𝑒𝑎𝑛 is the mean of 

the observed value. 

2.4.1 Verification Statistic for deterministic simulations 

I. Nash-Sutcliffe efficiency (NSE): 

NSE computes the relative magnitude of the residual variance compared to the variance 

of the observed data. Its value ranges from −∞ to 1, 1 being the optimal value (Moriasi 

et al., 2007). 

𝑁𝑆𝐸 =  1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠 −  𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

] 

II. Mean error (ME): 

𝑀𝐸 =
1

𝑁
∑(𝑌𝑖

𝑠𝑖𝑚 −  𝑌𝑖
𝑜𝑏𝑠)

𝑁

𝑖=1

 

III. Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =  
1

𝑁
∑ |(𝑌𝑖

𝑠𝑖𝑚 −  𝑌𝑖
𝑜𝑏𝑠)

𝑁

𝑖=1

| 

IV. Percent Bias (PBIAS): 
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PBIAS computes the deviation of simulated data/forecast from the observation as a 

percentage. The optimal PBIAS value is 0 (Moriasi et al., 2007).  

 

𝑃𝐵𝐼𝐴𝑆 =  [
∑ (𝑌𝑖

𝑜𝑏𝑠 −  𝑌𝑖
𝑠𝑖𝑚) ∗ 100𝑛

𝑖=1

∑ 𝑌𝑖
𝑜𝑏𝑠𝑛

𝑖=1

]  

V. Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑌𝑖

𝑜𝑏𝑠 −  𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

𝑁
 

VI. Pearson Correlation Coefficient (r): 

𝑟 =  
∑ (𝑌𝑖

𝑠𝑖𝑚 −  𝑌𝑖
𝑠𝑖𝑚) (𝑌𝑖

𝑜𝑏𝑠 −  𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

√∑ (𝑌𝑖
𝑠𝑖𝑚 − 𝑌𝑖

𝑠𝑖𝑚)
2

∗  ∑ (𝑌𝑖
𝑠𝑖𝑚 −  𝑌𝑖

𝑠𝑖𝑚)
2

𝑛
𝑖=1

𝑛
𝑖=1

 

2.4.2 Verification Statistic for ensemble simulations 

Continuous Ranked Probability Score (CRPS): 
 

In order to interpret the ensemble simulations and forecasts, they need to be converted 

to probabilities so that they could be evaluated using probabilistic scoring rules. The 

Continuous Ranked Probability Score (CRPS) is a vital verification tool for 

probabilistic forecasts of continuous variables (Carney et al., 2006). This method 

evaluates the probability of forecasts in the form of cumulative distribution functions 

(Bröcker, 2012) converting the ensembles to a piecewise constant cumulative 

distribution function.  

𝐶𝑅𝑃𝑆 = 𝐶𝑅𝑃𝑆 (𝑃, 𝑋𝑎) =  ∫ [𝑃(𝑥) − 𝑃𝑎(𝑥)]2𝑑𝑥

∞

−∞

 

Where 𝑃 and 𝑃𝑎 are cumulative distributions: 

𝑃(𝑥) =  ∫[𝜌(𝑦)]𝑑𝑦

x

−∞

 

𝑃𝑎(𝑥) = 𝐻(𝑋 − 𝑋𝑎) 

𝐻(𝑥) =  {
0, 𝑓𝑜𝑟 𝑥 < 0
1, 𝑓𝑜𝑟 𝑥 ≥ 0

 

 
Figure 3: Illustration of CRPS, adopted from (T. Hamill, 2010) 
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Like RMSE, CRPS statistic has dimensions the same as the observed variable. As 

illustrated in Figure 3, CRPS compares the cumulative probability distribution (CDF) of 

the ensemble and the observation. An optimum value of 0 occurs when the CDF of the 

ensembles matches that of the observation. CRPS computes the square of the difference 

between the forecast and observed CDFs. 

2.4.3 Skill scores 

In order to quantify the quality of the ensemble forecasts, it is not enough to have the 

verification statistics alone. It is customary to define a reference against which a 

forecast can be judged (Jolliffe, 2003). In other words, the forecasts need to be 

compared with other reference forecasts or climatology. The general equation used to 

calculate forecast skills and the two forecast skills used in this study are as follows:  

 

𝑆𝑘𝑖𝑙𝑙 =  
𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓 −  𝑆𝑐𝑜𝑟𝑒𝑓  

𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓

   𝐶𝑅𝑃𝑆𝑆 =
𝐶𝑅𝑃𝑆𝑟𝑒𝑓  −  𝐶𝑅𝑃𝑆𝑓  

𝐶𝑅𝑃𝑆𝑟𝑒𝑓

    𝑅𝑀𝑆𝐸𝑆 =
𝑅𝑀𝑆𝐸𝑟𝑒𝑓  −  𝑅𝑀𝑆𝐸𝑓  

𝑅𝑀𝑆𝐸𝑟𝑒𝑓

 

 

Where 𝑆𝑐𝑜𝑟𝑒𝑓 represents the verification score (calculated using one of the statistics) 

and 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓 is the verification score of the reference forecast. In this study, open loop 

simulation (simulation without data assimilation) is considered as the reference forecast. 

A long term simulation is done with the model (without data assimilation) and the 

simulation error is quantified with the deterministic verification statistic outlined in 

2.4.1 and this error is assumed to be the verification score for the reference forecast.  
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3. Case Study 

The study area is the upper Murrumbidgee catchment (shown in Figure 4), located in 

the Murray Darling Basin, in southern New South Wales, Australia with a total area of 

84,000 km2. Elevations reach up to 2,200 meters in the eastern ranges plummeting to 50 

meters in the western plains. The climate varies significantly from alpine conditions in 

upper parts of the catchment to semi-arid conditions in the Riverina plains further 

downstream.  The Murrumbidgee River spanning almost 1,600 kilometres, is 

Australia’s second longest river and a major tributary of the Murray river. The 

catchment supports a population of 520, 200 people in addition to several irrigation 

districts and a complex range of natural ecosystems that rely on it (NSW Office of 

Water, 2011). 

 

 
Figure 4: Study Area - Murrumbidgee catchment 

 

Rainfall in the catchment varies a lot but it ranges from 350 millimetres on the western 

plains to well over 1,700 millimetres in the Snowy Mountains as shown in Figure 5. The 

land use in the catchment is mainly devoted to extensive agriculture with grazing 

occupying 64% of the catchment (NSW Office of Water, 2011). However, the upper-

Murrumbidgee which is the specific case study area is mainly comprised of 

conservation areas and forests. Streamflow is monitored with more than 100 river 

gauges within the catchment that record flows continuously. The Murrumbidgee River 

at Gundagai (location of interest for data assimilation) has a mean daily flow of about 

114 m3/s with a catchment area of 21,100 km2. Gundagai was hit by severe floods 

several times, recent flooding events include the 2012 and the 2016 floods. The 2012 

flood had a staggering 4000m3/s discharge at Gundagai. Gundagai was also hit by the 

“worst flood to ever hit Australia” in 1852 that claimed the lives of 89 people 

(FloodList, 2013).   
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Figure 5: Average annual rainfall in the Murrumbidgee catchment. Adopted (NSW Office of Water, 

2011) 

 

The Murrumbidgee River caters for the water demands of towns, irrigation fields, 

wetlands, and hundreds of other users that extract water along the river by direct 

pumping. The river flow is regulated by the Burrinjuck and Blowering dams and other 

weirs and off-stream storages. The required amount of water is delivered by the State 

Water through a controlled release of water from the two dams.    

 

The daily management of the river to fulfil the above demands is very complex. The 

different river processes are difficult to quantify and thus the optimal reservoir release is 

compromised and oftentimes a surplus release is issued. Moreover the river tributaries 

downstream of the two dams contributing additional flows and the change in water 

orders further complicate the river operation process. This is evidenced by river 

operators issuing a conservative reservoir release which is more than required because 

of the high uncertainty they are dealing with. As a result, the common suboptimal 

release strategies have been leading to inefficient river management. This inefficient 

operational practice needed to be redeemed and a new decision support system, the 

Murrumbidgee Computer Aided River Management (CARM) was introduced.  Its 

overall goal is to enhance the efficiency of operational dam and weir release strategies. 

It is composed of different MIKE simulation models developed by DHI that capture the 

key catchment runoff and other relevant river flow processes. The tool makes use of real 

time measurements and models to provide a comprehensive decision support system. 

Taking into account forecasts of river inflows and real time water orders, optimization 

of dam operations is possible. (T. van Kalken et al. 2012).  

 

With the implementation of the CARM decision support system (DSS), it is intended to 

assimilate measured flows and water levels in the hind-cast period in order to capture 

accurate description of the state of the river just before the time of forecast. This will 

enhance the streamflow forecast accuracy greatly. However, the data assimilation 
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system in the current CARM DSS operates in such a way that only the rainfall-runoff 

modelling outputs (catchment outflows) are updated and state variables which describe 

the hydrological state of a catchment [surface storage, overland flow reservoirs, 

Interflow reservoir, Groundwater storage etc.] are not updated. It is obvious that the 

hydrological states determine the actual state of the catchment and not considering them 

in the data assimilation will have some adverse effect on streamflow forecast as the 

current condition of the catchment is not represented well. This study is expected to 

bring an added value [by incorporating combined hydrodynamic-hydrological model 

states updating] to the current data assimilation procedures being implemented within 

CARM DSS in order that the actual state of the catchment will be represented with 

greater accuracy which will in turn lead to a more accurate streamflow forecast.  
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4. Data and Model Setup 

This chapter discusses the types of data used for the study as well as the different model 

setups used for the analysis. The hydrological-hydrodynamic model has already been 

calibrated and validated thus this study is focused mainly in applying the ready-to-use 

model together with the Data Assimilation Framework in order to make state updating 

and forecasting experiments.  

4.1 Data Used 

4.1.1 Precipitation  

Observed rain gauge precipitation data is obtained from the New South Wales, 

Department of Primary Industries Water main website (DPI, 2017) for the period of 

2012 to 2016.  

 

In this study, alternative precipitation products were also used in addition to the rain 

gauge rainfall data. Three satellite rainfall products namely, TRMM 3B42 RT, CHIRPS, 

and PERSIANN-CCS were used in comparison with rain gauge data. Sub-catchment 

level daily rainfall estimate was downloaded for the above satellite products using in-

house (DHI) scripts.  

 
Table 1: Satellite rainfall dataset used for analysis 

Satellite 

product 

Temporal 

Resolution 

Spatial 

Resolution1  

Calibration 

period 

Validation 

period 
Remarks 

TRMM 3B42 

RT 

Daily 0.250 x 0.250 2005-2012 2013-2016 - 

CHIRPS Daily 0.250 x 0.050 1990-2012 2013-2016 - 

PERSIANN-

CCS 

Daily 0.040 x 0.040 - - Several 

missing data 

 

The satellite rainfall estimates were used in a rainfall-runoff model and the model was 

calibrated and validated for the periods outlined in Table 1. Since the PERSIANN 

dataset has several missing data, it was not considered for rainfall-runoff simulation. 

 

Considering several factors, the most appropriate precipitation product will be used to 

run the rainfall-runoff simulations, hydrodynamic modelling as well as data assimilation 

experiments. 

4.1.2 Discharge  

Hourly discharge data from 1990 to 2016 was obtained from the same source as that of 

the rain gauge precipitation. These include discharges measured at catchment outlets 

and also along the river. The hourly discharge observations are used as diagnostic 

variables in the assimilation process meaning the observed discharges are considered 

true values with which the assimilated discharge will be verified against. A time series 

for the release information from the Burrinjuck and Blowering dams is also obtained 

which was used as a boundary condition for the hydrodynamic model. 

                                                 
1 One degree around the equator is approximately 110km 
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4.2 Model Set-up 

The hydrological-hydrodynamic modelling in this study was carried out with MIKE 11 

hydrological-hydrodynamic model.  

4.2.1 Hydrological model 

MIKE NAM,  which is the rainfall-runoff module of the MIKE 11 modelling system, 

simulates rainfall-runoff processes at the catchment scale (Madsen et al., n.d.).   It is a 

lumped, conceptual model that comprises of several mathematical equations describing 

the simplified version of the land-phase of the hydrological cycle. Different components 

of the rainfall-runoff process are represented by the model by continuously accounting 

for the water content in four different storages which are interrelated, viz. snow storage, 

surface storage, root zone storage, groundwater storage(Dhi, 2007). 

 

 
Figure 6: Structure of MIKE NAM model. Adopted from (Dhi, 2007) 

 

Figure 6 illustrates the physical processes that are involved in the simulation of runoff 

in the NAM model, the catchment runoff computed by NAM split into overland flow, 

interflow, and baseflow as shown in Figure 6. The inputs to the rainfall-runoff model 

include catchment average meteorological data such as precipitation, potential 

evapotranspiration and temperature (when snow module is considered). Taking into 

account the above inputs, NAM computes the catchment runoff which can in turn be 

used for hydrodynamic modelling. The rainfall-runoff model includes all the sub-
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catchments that are shown in Figure 7, however, this study is concerned with all the 

eleven catchments upstream of Gundagai which is a small town that has been hit by 

flooding several times. 

The sub-catchments of interest (for the implementation of data assimilation) are marked 

yellow as shown in Figure 7. Detailed MIKE 11 rainfall-runoff and river hydrodynamic 

models for the model domain have already been setup and calibrated by DHI in 

collaboration with State Water Corporation (SWC).  Table 2 outlines the sub-

catchments within the model domain. Comparison of hydrological model states update 

was done for the Goobarragandra sub-catchments.  

 
Table 2: Sub-catchments within the model domain 

Sub-catchment name 
Area 

(Km2) 

Annual 

Precipitation 

(mm) 

No. rain 

gauges 

JUGIONG 2133.6 466 7 

GOOBARRAGANDRA 668.7 930 5 

MUTTAMA 1079.8 846 7 

BRUNGLE 119.1 824 4 

ADJUNGBILLY 390.1 886 5 

GILMORE 276.9 1348 4 

RES_BJUCK_GUND 1257.8 828 7 

RES_TUMUT_US_BRUNGLE 444 747 7 

RES_TUMUT_DS_BRUNGLE 111 965 3 

KILLIMCAT 22.6 1327 1 

UG_BOMBOWLEE 78.3 1028 3 

 

 
Figure 7: Model domain - selected sub-catchments shown in yellow 



Data Assimilation in Hydrodynamic-Hydrological Forecast Systems 
 

  

Michael Getachew Tadesse 21 

 

4.2.2 Hydrodynamic model 

MIKE 11 hydrodynamic module (HD) is a one dimensional flow model that implements 

an implicit, finite difference scheme in order to compute unsteady flows in rivers and 

channels (Dhi, 2007).  Boundary conditions in the model include, discharge, water level, 

discharge/water level relation, wind field, dam break and resistance factor. Rivers and 

floodplains are represented as interconnected branches (Kamel, 2008). Discharge and 

water levels along the river branches are computed at alternative points with respect to 

time as illustrated in Figure 8. 

 

 
Figure 8: Model discretization for discharge and water level computation.  

Adapted from (Blasone, 2014) 

 

 
Figure 9: MIKE 11 setup for the model domain 

 

The eleven sub-catchments in the model domain (see Figure 7) generate a lateral inflow 

in the MIKE 11 river model. The river network and the corresponding sub-catchments 

with the two dams upstream are shown in Figure 9.  
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5. Research Methodology 

This chapter is devoted to the detailed description of the methodology used in this study. 

It begins with the outline of the method used to select appropriate precipitation product 

for further analysis in 5.1. Followed by a brief introduction of the model states (5.2) that 

will be updated with the data assimilation technique. A through description of the data 

assimilation framework used for the study is discussed in 5.3. The different categories 

of data assimilation implemented in the study and the effect of data assimilation on 

forecasts will be elaborated subsequently. Procedures used to carry out sensitivity 

analysis of the data assimilation filter follow in 5.6. The high-level workflow of this 

study is shown in Figure 10 and the corresponding detailed workflows are displayed in 

Figure 11, Figure 12, and Figure 13 respectively.  

 

 

 

5.1 Selecting appropriate precipitation data 

This section discusses the methodology used to compare and select appropriate 

precipitation data for data assimilation and forecast experiments. As described in 2.1, 

one of the methods used to reduce uncertainty in hydrological models and forecasts is to 

acquire a higher quality hydrologic data. This includes acquiring reliable precipitation 

data. This guarantees better model calibration, simulation and more reliable forecasts. In 

pursuit of this, the use of three satellite rainfall products was studied on rainfall-runoff 

modelling for one of Murrumbidgee sub-catchments.  First, the different satellite 

rainfall products will be compared with rain gauge observations, followed by the 

application of bias correction on the satellite rainfall products in order to account for 

errors. The bias corrected satellite precipitation will then be used to re-calibrate the 

already available model (which is calibrated with rain gauge rainfall data). Finally, the 

bias corrected satellite precipitation will be used for rainfall-runoff simulation and the 

corresponding errors in simulation will be analysed and compared with that of the rain 

gauge. Eventually the rainfall product that can simulate the rainfall-runoff process in a 

better way will be selected as the appropriate precipitation data. 

 

Figure 10: High-level workflow 
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 Figure 11: Detailed workflow #1 
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   Figure 12: Detailed workflow #2 
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Figure 13: Detailed workflow #3 
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5.1.1 Bias Correction Method 

Satellite rainfall estimates contain large systematic as well as random errors (Habib et 

al., 2014) and this could be due to gaps in revisit times, discrepancies between remotely 

sensed signals and rainfall rates or due to atmospheric fields that affect the radiation 

field (Xing Liu et al., 2015). Thus, it is crucial to investigate and correct the bias in 

satellite-based precipitation products before they are to be used for rainfall-runoff 

modelling. Otherwise, if the bias is not taken into account, the rainfall-runoff modelling 

will exhibit large uncertainty. A multiplicative bias correction factor is used in this 

study, whereby the satellite rainfall estimate is multiplied by a factor which is the ratio 

between the satellite and rain gauge rainfall estimates. Better correlation was found in 

the monthly scale, thus bias correction factors are computed on monthly basis. Daily 

rainfall estimates from the satellite products as well as instantaneous rain gauge 

measurements were aggregated to a monthly time scale and the following equation was 

used to compute the bias correction factor K. 
 

𝑅𝐺𝑚 = 𝐾𝑚 ∗ 𝑆𝑅𝐸𝑚 

Where 𝑅𝐺𝑚  and 𝑆𝑅𝐸𝑚represent the monthly average rainfall during the month m from 

the rain gauge and the satellite rainfall products respectively, and  𝐾𝑚  is the bias 

correction factor for the month of m. Since the average monthly rainfall data were used 

(from 2013 to 2016), all the months of January for instance are corrected with the same 

bias correction factor (𝐾𝑚). Thus, monthly corrected satellite rainfall estimates can be 

computed as follows where 𝑆𝑅𝐸𝑐𝑜𝑟𝑟,𝑚  and 𝑆𝑅𝐸𝑟𝑎𝑤,𝑚  are corrected and raw 

(uncorrected) rainfall estimates for the month m. 

𝑆𝑅𝐸𝑐𝑜𝑟𝑟,𝑚  =  𝐾𝑚 ∗  𝑆𝑅𝐸𝑟𝑎𝑤,𝑚 

In order to simulate the rainfall-runoff process, the monthly corrected satellite rainfall 

estimates need to be disaggregated to daily time steps. To this end, an empirical factor 

adopted from  (Arias-Hidalgo et al., 2013) was computed using the following equation: 

𝑓𝑑,𝑚 =  
𝑃𝑑,𝑚

𝑅𝐺𝑚
 

Where 𝑓𝑑,𝑚 represents the temporal disaggregation factor, and 𝑃𝑑,𝑚 is the total rainfall 

measured on the day d of the month m, and 𝑅𝐺𝑚  is the total rainfall (rain gauge) 

measured during the month m. Thus: 

𝑆𝑅𝐸𝑐𝑜𝑟𝑟,𝑑 =  𝑓𝑑,𝑚 ∗  𝑆𝑅𝐸𝑐𝑜𝑟𝑟,𝑚  
Where 𝑆𝑅𝐸𝑐𝑜𝑟𝑟,𝑑 represents the corrected satellite rainfall on the day d. 

5.1.2 Rainfall-runoff simulation 

The usefulness of the bias corrected satellite rainfall estimates will be investigated by 

performing a rainfall-runoff simulation. To this end, a single sub-catchment, 

Goobarragandra was selected and the hydrological model was re-calibrated for this sub-

catchment using the bias corrected satellite rainfall estimates. It is to be recalled that the 

rain gauge rainfall data is limited to four years (2013 - 2016), however in order to re-

calibrate the hydrological model with adequate data, the satellite rainfall estimates 

dating back to 2005 (TRMM) and 1990 (CHIRPS) were corrected with the same bias 

correction factor computed using the equations in 5.1.1. After re-calibration, the model 

will be validated and corresponding errors in simulation of runoff will be analyzed. 

Eventually the rainfall-runoff simulation (using satellite precipitation) will be compared 

with that of the rainfall-runoff simulation (using rain gauge precipitation) and 

depending on how good the process is represented the appropriate precipitation product 

will be chosen. 
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5.2 Model states to be updated  

This study aims to update hydrological and hydrodynamic model states separately as 

well as in a combined manner making use of streamflow observations. As explained in 

4.2.1, the NAM model states consist of several storages that represent the different 

components in the catchment process which are illustrated in Figure 6. It’s apparent that 

incorrectly estimated catchment states would lead to discrepancies between observed 

and simulated streamflow. Thus by assimilating observed streamflow both the 

hydrological and hydrodynamic states can be updated. Eventually, the updated 

hydrological-hydrodynamic states help to attain a better prediction of streamflow.  

 
Table 3: Selected model states for data assimilation  

No. Model State unit Type Class2 

1 Surface Storage % Hydrological G 

2 Root Zone Storage % Hydrological G 

3 Overland First Reservoir Storage m Hydrological G 

4 Overland Second Reservoir Storage m Hydrological G 

5 Interflow First Reservoir m3/s Hydrological G 

6 Ground Water Depth  m Hydrological G 

7 Total Runoff m3/s Hydrological O 

8 Discharge m3/s Hydrodynamic G/O 

9 Water Level m Hydrodynamic G 

 

Table 3 outlines the list of model states selected for data assimilation. A hydrological 

update (RR update) is where the rainfall-runoff model states are updated. These are the 

model states ranging from 1 to 6. By assimilating observed discharges (total runoff) at 

the catchment outlets, the six internal model states will be updated. The second category 

of data assimilation is where only the hydrodynamic model states are updated; these are 

the eighth and ninth model states shown in Table 3. Using the observed discharges on 

selected gauging stations, the discharge and water levels will be updated. Note that this 

category of update does not update the hydrological model states. Finally, all the 

hydrological model states (1 to 6) as well as the hydrodynamic states (8 & 9) can be 

updated simultaneously. The above three categories of data assimilation will be 

explained in detail in 5.4.   

 

Several data assimilation experiments have been done by accessing the DHI Data 

Assimilation Framework (which will be explained shortly) in order to update the above 

hydrologic as well as hydrodynamic model states. 

  

5.3 Data Assimilation Framework 

The DHI Data Assimilation Framework (DA framework) is a set of generic assimilation 

filters, noise models, observation mapping methods and result analysis tools (DHI, 

2017). Object-oriented best practices were used to design the DA framework in a 

modular fashion with interfaces that define the boundaries of each module. The DA 

framework is coded in C# by using the .NET 4.0 Framework. The matrix equations are 

solved using the system optimized Intel Math Kernel Library (MKL) (Madsen et al., 

                                                 
2 G and O stand for general and observable model states 
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n.d.). The DA framework can implement different types of assimilation in order to 

update the state variables or parameters. However, in this study the framework was used 

to update the state variables (model states); the parameters are assumed to be optimized 

during calibration. The framework supports different ensemble based KF algorithms 

such as classical EnKF, ETKF (which is used for this study), as well as Deterministic 

Ensemble KF. In order to apply these filters, an ensemble of model runs is needed after 

which the filter recursively computes the Kalman gain based on the uncertainty in the 

model and the uncertainty in the observations. Procedures for localization (described in 

detail in 5.3.2 are also included in the framework in addition to the different stochastic 

error models that describe model and measurement errors. 

 

A discretized MIKE 11 model shown in Figure 8 for instance is comprised of a number 

of state variables some of which are outlined in Table 3. With the framework, state 

variables of interest are chosen as in Table 3. A state vector is then defined that includes 

the selected state variables, thus all the state variables within the state vector will be 

updated during the assimilation period. The DA framework contains five main modules 

as illustrated in Figure 14.  

 Core: communicates and controls all the modules 

 User configuration: reads a PFS file that contains the details of the assimilation 

experiment specified by the user such as ensemble size, location of the model on 

disk, location observation, chosen filter, localization details, noise models, and 

the selected state variables to be included in the state vector. 

 Filters: the filter takes abstracted vectors and matrices from the Core and solves 

the KF equations to calculate the optimal correction to the ensemble of models.  

 Observations: handles observations and mapping observation points to the 

model space.  

 Error models: include generic perturbation algorithms for defining uncertainty 

in model forcings, initial conditions, model states and observations. 

 

 
Figure 14: Overview of the modules included in the DA framework. Source (DHI, 2017) 

 

The Model Interface shown in Figure 14 is required in order to connect the MIKE 11 

model to the DA framework. These interfaces define how the model is created and 
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controlled in time. The ensemble of models is created from a single model instance, and 

each ensemble member is perturbed during simulation within the MIKE 11 model 

engine. The DA implementation supports the update of discharge and water level states 

in the hydrodynamic model and the internal model states in the hydrological (rainfall-

runoff model) as outlined in Table 3. 

 

The DA framework performs a number of tasks: 

1. Reads a configuration (PFS) file to set up the assimilation system 

2. Creates an ensemble of model instances and a main model3  

3. Reads observation files and collects them in an Observation Collection class. 

4. Maps the observations to the model indices to find the “H”4 matrix. Also if 

localization is enabled, it calculates the distances between model grid elements. 

5. Time steps all model instances (Ensemble and MainModel) to the time of first 

observation. 

6.  The Core reads model values and observation values to create the matrices for 

assimilation. 

7. The Filter is called with access to the matrices. Assimilation step calculates the 

new updates. Filter results are stored to files. 

8. The models are updated. 

9. Steps 5-8 are performed until there are no more observations. 

10. The models are allowed to run to their end times. 

5.3.1 Perturbation Methods 

Discrepancies between observations and model predictions stem from three sources of 

uncertainty, viz., observations, model forcings or model boundaries and model structure.  

By perturbing the model an ensemble is generated that represents the uncertainty in the 

model state estimate. Each ensemble member is then propagated forward and the 

hydrological model states are simulated given the continuously perturbed forcing as 

well as states (Xie et al., 2010). Model uncertainty inherent to the NAM model states 

can be addressed by carrying out state or forcing perturbation utilising appropriate 

perturbation methods in the DA framework. Precipitation is the sole model forcing that 

is perturbed in this study considering that it is a dominating source of uncertainty. In 

this study perturbation is applied on model forcing (precipitation). 

Forcing Perturbation 

Precipitation is considered as the most uncertain model forcing owing to its short 

temporal and spatial correlation length scales. Thus it is challenging to reduce the 

uncertainty in precipitation (Y. Liu et al., 2012). In a data assimilation context, the most 

common way to quantify uncertainty in precipitation is by stochastically perturbing the 

precipitation inputs.  The DA framework has several perturbation methods that can be 

used for a specific model.  It consists of several forcing perturbation types, however, the 

relative normal perturbation is implemented for this study. The perturbation equation is 

as follows: 

 

𝑢𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 = 𝑢 + 𝑢 ∗ 𝜀 

 

                                                 
3 Main model: the ensemble mean 
4 Observation operator: Relates available observations to the model states in the state vector 
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Where u is forcing (precipitation in this case) and 𝜀 represents the relative error drawn 

from a normal distribution, 𝜀 ∈ N(0, 𝜎𝑓𝑟𝑎𝑐
2 ), where 𝜎𝑓𝑟𝑎𝑐

2  is the standard deviation of 

the fractional error specified by the user (DHI, 2017). 

Time correlation 

Errors associated with forcings are time correlated and their dependency between model 

time steps should be considered. A first order autoregressive (AR1) normal distribution 

error model is used to model the time correlated error in the perturbation methods (DHI, 

2017). The following equation describes the sampling of the error.  

𝜀𝑡 = 𝜑 ∙ 𝜀𝑡−1 + 𝛾𝑡 

Where 𝜀𝑡 and 𝜀𝑡−1 are the errors sampled on the current and previous time steps, 𝜑 the 

correlation coefficient and 𝛾𝑡  the independent sample added to the error from the 

previous time step. Rather than defining 𝜑 directly it is calculated from an exponential 

decay equation where the half time constant, 𝑇1/2, of the time correlated error must be 

specified: 

𝜑 = exp (−
∆𝑡 ∙ ln(2)

𝑇1
2

) , 𝑇1
2

> 0 

∆𝑡 is the time span from t-1 to t and  𝑇1/2 the half time. The AR1 model is applied to the 

error, 𝜀. 𝛾𝑡, the independent sample, 𝜖 𝑁(0, ( 1 − 𝜑2) ∙ 𝜎2). 𝜎 is specified by the user as 

the standard diviation of the relative error when relative perturbation is used and 

otherwise as the standard deviation of the error in real values.  

5.3.2 Localization 

Localization is an algorithm used to reduce the impact of errors in ensemble Kalman 

filters (Anderson, n.d.). It reduces the spatial domain of influence of observations 

during the update. In large systems inadequate sampling due to limited number of 

ensemble sizes leads to spurious correlations 5  between distal locations in the 

background covariance matrix. The purpose of localization is to prevent these spurious 

correlations from causing observations from one location to affect erroneously the 

analysis at a distal location. When localization is implemented, ensemble anomalies 

outside of a local window are set to zero; greater emphasis is given to states closest to 

the observation (DHI, 2017). A distance-based localization (shown in Figure 15) 

technique was used in this study in which a spatial window is created around each 

observation point where non-zero localization weights are used. In other words a 

localization weight of zero is used for model grid points far away (can be specified by 

the user) from the observation. The DA framework offers constant, triangular, 

exponential, linear and Gaussian localization methods. A triangular localization method 

was used for this study where the model grid closest to the observation point will have 

the highest localization weight and this weight decreases linearly when going away 

from the observation point in a triangular fashion.   

 

                                                 
5 A false premise that two variables are correlated when in actuality they are not (Investopedia, n.d.) 
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Figure 15: Localization (Source: DHI Data Assimilation Framework) 

 

Spatial correlation 

Catchment rainfall is not only temporally correlated; it is spatially correlated too. Thus 

the spatial correlations can be introduced similarly as for time correlations through the 

sampling of the errors, 𝜀. If an AR1 model is used the transformation of the error is 

applied to the independent sample. 

 

Cholesky decomposition is used to transform the uncorrelated errors, 𝜀 into correlated 

errors. The correlation matrix, itself must be generated outside the DA framework and 

specified as input.  

 

Through Cholesky decomposition the correlation matrix, C is factorized into: 

 

𝐶 = 𝐿𝐿𝑇 

 

Where L is used to generate correlated errors by: 

 

𝜀𝑐𝑜𝑟𝑟 = 𝐿 ∙ 𝜀 
 

The correlation matrix, C, was prepared by computing the correlation of monthly 

accumulated rainfall for the eleven catchments in the model domain. Due to the several 

missing rainfall data from the rain gauges, the correlation matrix was calculated on a 

monthly time scale by aggregating the instantaneous precipitation time series. 

 

5.4 Implementation of Data assimilation 

Under this section, the three different data assimilation methods applied will be 

discussed. The three assimilation methods are hydrological model states update, 

hydrodynamic model states update and combined model states update.  The 

implementation of data assimilation is following the selection of the appropriate 

precipitation product.  
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5.4.1 Hydrological model states update 

The first step in the process of studying the combined hydrodynamic-hydrological 

model state updates is to test the data assimilation on individual sub-catchments. The 

Murrumbidgee catchment is comprised of several sub-catchments and two sub-

catchments (marked purple in Figure 16) were chosen based on differences in terrain 

and rainfall variability. This will allow to investigate the performance of the data 

assimilation in different types of catchments and it will also help study the optimum 

values for the filter parameters for different types of sub-catchments.  

 

 
Figure 16: Two chosen catchments (purple) for implementation of data assimilation 

 

To this end two sub-catchments namely, Goobarragandra and Jugiong were chosen for 

this specific part of the study as shown in Figure 16. The former one is characterised by 

a mountainous terrain and it is a high yielding sub-catchment (wet sub-catchment) 

whereas the latter is mostly dry. A comparison of monthly mean discharge (2012 to 

2017) for the two catchments is shown in Figure 17. 

 

 
Figure 17: Monthly Mean Discharge Comparison for the selected catchments (2012 to 2017) 
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5.4.2 Hydrodynamic model states update 

Streamflow measurements from four interior gauging stations (marked white in Figure 

18) are assimilated and observed discharge at a downstream location (Gundagai) is used 

for streamflow validation purposes. In this case, the state vector includes only the 

hydrodynamic states, namely discharge and water level.  Similarly the results of the 

assimilation will be further evaluated by generating consecutive forecast experiments to 

estimate the discharge at Gundagai. Consecutive forecasts with a lead time of seven 

days will run for a period of a year. Thus the performance of the forecasts based on the 

hydrodynamic update will be verified as a function of lead time. Detailed results and 

discussion of this analysis can be found in 6.5.  

5.4.3 Combined hydrodynamic - hydrological model states update 

The state vector in this analysis is comprised of two hydrodynamic states (Discharge 

and Water level) and six hydrological states. There are 11 gauging stations where hourly 

discharge is made available of which seven are located at the catchment outlets and the 

other four in the middle of the river network. Thus, assimilating the observed discharges 

at the catchment outlets, the hydrological states of the catchments are updated and 

assimilating the river discharges in the middle of the river, the hydrodynamic states of 

the river are also updated. The results of this analysis are illustrated in in 6.6.   

 
 

 
Figure 18: Model domain, points marked white are used for hydrodynamic update whereas stations 

marked red are used for both hydrological and hydrodynamic update 
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5.5 Investigating the effect of DA on forecasting  

After the model states are updated up until the time of forecast, the effect of data 

assimilation can be validated by making a series of forecasts. The forecast strategy used 

in this study is similar for all the three categories of updating explained in 5.4. The 

forecast strategy used for the Sensitivity Analysis is slightly different and will be 

explained in 5.6. Data assimilation is employed for a longer time frame, mostly ranging 

from 6 months to 1 year by assimilating available observations and sequentially 

updating the model states. At the end of the data assimilation period, a hot-start 

information is stored to be accessed at the time of forecast. The time of forecast is 

chosen within the time frame covered by the assimilation period (refer Figure 19) in 

order to study the benefit of the assimilation on forecast improvement. Every forecast is 

based on the information stored prior to the time of forecast and this is accessed from 

the hot-start file. After the series of forecasts is complete, different forecast verification 

techniques are applied to test the performance of the data assimilation and the forecast 

error is quantified as a function of lead time.  

 

 
Figure 19: Data assimilation and forecasting procedure 

5.6 Sensitivity Analysis 

One of the challenges in the application of data assimilation methods is that the model 

and observational uncertainties are poorly known, and data assimilation systems 

operating under poor estimates of input uncertainties give forth a suboptimal estimate of 

the model states (Reichle et al., 2008). Thus, one of the objectives of this study is to 

investigate the sensitivity of the data assimilation to the filter parameters such as 

ensemble size, model uncertainty, model forcing uncertainty, as well as observation 

uncertainty. Obviously the data assimilation algorithm is highly influenced by the 

choice of input error parameters. Therefore, the sensitivity of the filter needs to be 

diagnosed thoroughly with respect to the input parameters (Kumar et al., 2008). The 

objective here is to find the best combination of filter parameters that represent the 
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model and measurement uncertainties more accurately in such a way that updated model 

states are close to the true state of the catchment just before the time of forecast (and 

beyond the time of forecast). (Sun et al., 2015) emphasized that proper error 

quantification of the model is a very important process in order to get acceptable results. 

Thus, the need for a sensitivity analysis arises to obtain the right filter parameters that 

represent the model and observation uncertainties.  

 

A set of different parameter ranges will be defined for every parameter that will be 

tested in the sensitivity analysis. Using the selected values for the parameters, a data 

assimilation run will be made and saved as a separate file for forecast initiation. 

Following the data assimilation a sequence of forecasts will be made and the forecasts 

will be verified as a function of lead time. This will be done for every case, which is 

comprised of a set of different filter parameters.  

5.6.1 First phase of sensitivity analysis 

In the implementation of the data assimilation, the probability distribution of model 

states is approximated by ensemble members. The general rule of thumb is that as the 

ensemble size increases the algorithm will be able to accurately propagate the error 

information at the expense of a computational burden. Therefore, it is crucial to 

investigate the appropriate ensemble size in order to balance the estimation accuracy 

and the computational expense (Xie & Zhang, 2010). This marks the first phase of the 

sensitivity analysis in this study. To this end, for a range of ensemble sizes data 

assimilation is applied and forecasts are generated and the forecasts are verified to 

compare the trade-off between forecast accuracy and computational time for the various 

ensemble sizes that are chosen. 

5.6.2 Second phase of sensitivity analysis 

The second phase of the sensitivity analysis is devoted to finding the optimum filter 

parameters that will represent uncertainty in the forcing (precipitation) and in the 

observation. The sensitivity analysis was narrowed to focus on the above two categories 

in order to limit the degrees of freedom when specifying the model and observation 

errors to the Kalman filter. Thus, the impact of different forcing and observation 

uncertainties is examined by intentionally varying the corresponding filter parameters. 

96 cases of different filter parameter combinations are defined and for each case data 

assimilation will be applied and sequential forecasts will be made. Figure 20 outlines 

the procedures used to implement data assimilation and forecasting. 

 

The forecasting procedure used in the sensitivity analysis is a bit different than the one 

explained in Figure 19. This is mainly because, the data assimilation has to be run for 

every combination of filter parameters and followed by forecasts. Where as in the 

general case, the forecasts can be done just after running the data assimilation with one 

set of filter parameters combination.  
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Figure 20:  DA and forecasting procedures for sensitivity analysis 

  

5.7 Verification Methods 

This section outlines the different verification methods used to test the performance of 

the data assimilation (updating). Two different ways of verification were applied in this 

study; deterministic verification and probabilistic verification. The deterministic 

verification methods such as RMSE, MAE, PBIAS etc. evaluate for instance the mean 

of an ensemble with the single observed data. On the other hand, probabilistic 

verification methods such as the continuous ranked probability score evaluate the full 

ensemble against a single observation. Table 4 lists the verification methods used in this 

study. 
Table 4: Verification methods used in this study 

Verification Method Type Used for Units 

Nash-Sutcliffe efficiency (NSE) Score Deterministic 

simulations/Forecasts 

% 

Mean Error (ME) Score Deterministic 

simulations/Forecasts 

Observed 

Variable 

Mean Absolute Error (MAE) Score Deterministic 

simulations/Forecasts 

Observed 

Variable 

Percent Bias (PBIAS) Score Deterministic 

simulations/Forecasts 

% 

Root Mean Square Error (RMSE) Score Deterministic 

simulations/Forecasts 

Observed 

Variable 

Pearson Correlation Coefficient (r) Score Deterministic 

simulations/Forecasts 

- 

Continuous Ranked Probability 

Score (CRPS) 

score Ensemble 

simulations/Forecasts 

Observed 

Variable 

Root Mean Square Error Skill 

Score (RMSES) 

Skill score Deterministic 

simulations/Forecasts 

- 

Continuous Ranked Probability 

Skill Score (CRPSS) 

Skill Score Ensemble 

simulations/Forecasts 

- 
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6. Results and Discussion 

This section discusses the results obtained after implementing the research methodology 

described in 5. The first part (6.1) presents the results of the assessment made to select 

the appropriate precipitation product among the several precipitation products including 

rain gauge precipitation data.  Upon selecting the appropriate precipitation product, as 

outlined in 5.4.1, two hydrologically different catchments were selected to show how 

the data assimilation works. The hydrological states of the individual catchments were 

updated by applying the ETKF data assimilation technique assimilating hourly 

discharge observations at the catchment outlets as shown in 6.2. The updated total 

runoff was verified by comparing it with the available observation at the catchment 

outlet. A forecast experiment was also done to test the performance of the assimilation 

in predicting the total runoff. Following this a sensitivity analysis was carried out (6.4) 

in order to configure the data assimilation filter with respect to several parameters as 

well as to find the optimum ensemble size that is computationally affordable and that 

gives a reasonable sampling space. In 6.5 discharge observations located along the river 

are assimilated to update the hydrodynamic states. Corresponding forecast experiments 

are also outlined with results. 6.6 shows the results of updating both hydrodynamic as 

well as hydrological states and the forecast improvements comparing the different 

updating categories.  

 

6.1 Selecting appropriate precipitation product for data 

assimilation 

6.1.1 Comparison of rainfall estimates 

Sub-catchment level precipitation data from the three satellite products (TRMM, 

CHIRPS, and PERSIANN) was compared with the mean average rainfall from the rain 

gauges (computed using Theissen polygon approach). Comparison was done for the 

years 2013 to 2016 since the in-situ rainfall data is limited. The discrepancies of the 

satellite and ran gauge rainfall are further illustrated in Figure 21. The three satellite 

rainfall estimates are compared against the rain gauge rainfall data for the May – 

October 2015 period. In addition, the observed discharge at the sub-catchment outlet 

was used as a benchmark in order to check if any one of the rainfall estimates miss or 

overestimate a peak event. 
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Figure 21: Comparison of the three satellite rainfall estimates with rain gauge rainfall 

 

It is apparent that from Figure 21 that the PERSIANN product severely underestimates 

the rainfall in several cases, besides there are multiple missing data in the time series. 

Compared to PERSIANN, the TRMM 3B42 RT product captures some of the important 

rainfall events even though there is still some records with 0 mm of rainfall where in 

actuality there was some observed rainfall. Generally speaking, CHIRPS captures 

important rainfall events and has less records that miss rainfall events. This 

generalization holds true for the other three years too (2013, 2014 and 2016). 
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Figure 22: Comparison between daily rainfall from rain gauges and three satellite products TRMM (top left), CHIRPS (top right), PERSIANN (bottom left) 

The three plots in Figure 22 indicate the correlation between the 

daily satellite rainfall estimates with that of the daily accumulated 

rain gauge data. Generally correlations are very low 0.54 (TRMM), 

0.61 (CHIRPS), and 0.33 (PERSIANN). There are several cases 

where the satellite measures precipitation and the rain gauges do 

not and vice versa. As illustrated in the plots, PERSIANN severely 

underestimates the rainfall as compared to the rain gauge rainfall. 

Whereas CHIRPS has relatively the best distribution around the 

y=x line.  
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6.1.2 Bias correction of satellite rainfall estimates 

Using the methodology in 5.1.1, the three satellite rainfall estimates were corrected and 

the accumulated mean daily rainfall over the Goobarragandra sub-catchment is 

displayed in Figure 23. In addition, the correlation between the bias corrected daily 

satellite rainfall products and the daily rain gauge rainfall was improved; 0.87 (TRMM), 

0.94 (CHIRPS), and 0.78 (PERSIANN) (refer Figure A 4). Again it can be seen from 

the accumulated rainfall comparison that all the three products underestimate the 

rainfall with PERSIANN having the highest underestimation. Whereas the CHIRPS 

rainfall product more or less reproduces the accumulated rainfall for the entire period. 

Moreover, after the bias correction, almost all the satellite rainfall estimates show 

improvement, with PERSIANN showing slight bias.  

6.1.3 Rainfall-runoff simulation 

The bias corrected satellite rainfall products were used to simulate the rainfall-runoff 

process for the Goobarragandra sub-catchment. Due to the several missing data noticed 

in the PERSIANN rainfall product, only the TRMM 3B42 RT and CHIRPS products 

were used for the rainfall-runoff simulation. In line with this, the hydrological model 

(MIKE NAM) was re-calibrated just for the Goobarragandra sub-catchment with the 

bias corrected rainfall products. Specifically for the periods of (2005 - 2012) for TRMM 

and (1990 - 2012) for CHIRPS as shown in Figure 24. The peak event in the year 2012 

could not be reproduced during calibration period (it was the major flooding event with 

an outlier 4000 m3/s discharge) when using any of the rainfall products. However when 

calibrating the model with CHIRPS dataset, the rainfall-runoff process is well captured 

also evidenced by the smaller volumetric error compared to that which used TRMM 

dataset for re-calibration. After re-calibration the hydrological model was forced with 

the two bias corrected satellite rainfall datasets and simulated for 4 years (2013 - 2016) 

on a daily time step. This is the period when the re-calibrated model was validated. 

Figure 25 illustrates the results of the rainfall-runoff simulation using three rainfall 

products, the TRMM, CHIRPS and the rain gauge.  It can be seen that the satellite 

products have more or less represented the daily streamflow at Goobarragandra outlet. 

The simulation with rain gauge rainfall overestimates the streamflow throughout the 

simulation period, however the major peak events are captured well. Generally speaking, 

the simulation with CHIRPS rainfall has the lowest error statistics and highest 

efficiency (refer Figure 25) compared to the other simulations. However, like the 

TRMM simulation, the major peak events like that of the Oct 2016 were underestimated.  
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Figure 23: Accumulated mean daily rainfall over Goobarragandra sub-catchment before and after bias correction 
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Figure 24: Re-calibration of rainfall-runoff model using TRMM (top) and CHIRPS (bottom) datasets (red and black lines represent observed and simulated flows) 
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Figure 25: Daily streamflow hydrographs at the Goobarragandra outlet simulated with 

TRMM (top left) and CHIRPS (top right), in-situ (bottom left) rainfall datasets, also 

statistic for the three simulations (bottom right) 
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This implies that even though the simulations with the two satellite products represented 

the rainfall-runoff process, they might not be suitable for flood prediction. Figure 26 

demonstrates how the TRMM and CHIRPS forced model underestimates the Oct 2016 

major peak as well as the small episodic events before and after the major event.  The 

model forced with rain gauge rainfall, however, captures the small peak events before 

Oct 2016 however, it overestimates the Oct 2016 peak event.   

 

Thus, it can be said that the use of the satellite rainfall estimates (TRMM, CHIRPS) 

generally produces a good estimate of the rainfall-runoff process and perhaps they can 

be used for large-scale hydrological modelling. However, for the sub-catchment in this 

study and the Murrumbidgee catchment in general accurate representation of initial 

states is very important to facilitate the reservoir operation system. Since the rainfall-

runoff modelling forced with satellite rainfall estimates gives sub-optimal results 

compared to that of in-situ rainfall forced rainfall-runoff modelling, it is better to use 

rain gauge rainfall for the hydrological-hydrodynamic modelling in the catchment as 

well as the data assimilation and forecast experiments in the study.  

 

 
 

 
Figure 26: Streamflow hydrographs for the Oct 2016 peak event using TRMM (top left), CHIRPS 

(top right), and in-situ (bottom left) datasets 

 

6.2 Hydrological model states update 

For the two selected catchments (Jugiong and Goobarragandra), a three yearlong 

simulation was done with the calibrated model (using rain gauge rainfall). Figure 27 

shows the simulation results, in addition specific events were chosen for both 

catchments in order to apply the data assimilation experiment. For Jugiong catchment 

the period from Jun-Aug 2016 was found to be of interest; 2016 was the wettest year for 

this catchment considering how dry it is. For the wet catchment, Goobarragandra, the 

Jun-Aug 2014 period was chosen for further analysis. 
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Figure 27: Comparison of observed and simulated discharge (three years) for Jugiong (top left) and Goobarragandra (top right) catchments; selected events for data assimilation 

for Jugiong catchment (bottom left) and for Goobarragandra catchment (bottom right) 
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The ETKF was configured with the parameters shown in Table 5 in order to update the 

hydrological model states. Different ensemble simulations were run for the selected 

period for the two sub-catchments in order to study the behavior of the ETKF. Figure 28 

and Figure 29 show the control simulation (ensemble simulation where there is no data 

assimilation), for simulation of total runoff in the two sub-catchments. In the control 

simulation, the filter propagates every ensemble member forward in time without 

assimilating the available observations (discharges). This allows to see how the 

ensemble is spread throughout the simulation period and notice how uncertainty is 

propagated. It’s where the assimilating/updating procedure is omitted.  

 

In the control simulations, the black line, (referred to as open loop in this study) 

represents the deterministic model run, whereas the red line (MainModel) represents the 

mean of the ensemble members, the light grey lines signify the individual ensemble 

members and the observation is shown by the blue points.  It can be seen that the open 

loop (black) is underestimating the runoff most of the time for Jugiong whereas it 

overestimates the runoff in the case of Goobarragandra. The behavior of the ensemble 

can also be viewed in all the hydrological states in Figure 30 as well as in Figure 31. It 

can be seen that when there is a substantial rainfall event, the ensemble spread becomes 

larger, increasing the background covariance error which in turn leads to a significant 

update after the assimilation of observations as displayed in Figure 33 and Figure 34.  

 
Table 5: Selected Filter parameters for updating 

Parameter  Unit Value 

Time Step Min 5 

Updating time step  Min 60 

Forcing Uncertainty (σ𝑓𝑜𝑟𝑐) - 0.5 

Half-Time constant (T1/2) hr 12 

Measurement Uncertainty (σ𝑜𝑏𝑠) - 0.1 

Ensemble size - 20 

 

Figure 30 and Figure 31 show the control simulation for the internal hydrological states 

for Jugiong and Goobarragandra sub-catchments respectively for the chosen period of 

simulation.  Looking at Figure 30, for instance, there are eight different simulations 

presented. From top to bottom it shows the ensemble simulations of the following 

model states; surface storage (top row), root zone storage (2nd row), overland first 

reservoir storage (3rd row), overland second reservoir storage (4th row), interflow first 

reservoir (5th row), groundwater depth (6th row), total runoff (7th row), and perturbed 

precipitation (bottom row).  

 

Generally, this control simulation is showing how each individual ensemble member is 

propagated forward in time. Looking at the control simulations of the two sub-

catchments, one can see that ensemble spread in Jugiong is larger than that of 

Goobarragandra. This is owing to the fact that there are more precipitation events in the 

former sub-catchment in that particular period. If the duration of precipitation is not 

enough or if there is no precipitation at all, the data assimilation algorithm (ETKF) can’t 

perturb precipitation of the ensemble members which leads to a reduced ensemble 

spread.  

 

After selecting the parameters for the filter, data assimilation was implemented.  At this 

point, the available observations (hourly discharges) have been assimilated and the 
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internal model states were updated.  Figure 32 shows the updated total runoff at the 

outlet of the two sub-catchments. The update for Goobarragandra seems much better 

than that of Jugiong, evidenced by the graphical comparison as well as the statistical 

analysis of the updates quantified by ME, MAE and RMSE. This is partly due to the 

poor simulation of the open loop (deterministic model run) of Jugiong, especially in 

capturing major peak events. It underestimates the total runoff by big amounts. On the 

contrary, the deterministic run for Goobarragandra is relatively better (even though it 

overestimates the total runoff) and thus better total runoff update. In addition, the less 

satisfactory update shown for Jugiong sub-catchment could be attributed to the 

erroneous selection of filter parameters. The filter parameters selected in Table 5 were 

chosen by using educated guess, or engineering judgement, the incorrect choice of filter 

parameters could actually deteriorate the update. Thus a sensitivity analysis of the filter 

parameters needs to be done in order to select the fitting parameters for the filter. This is 

discussed in detail in Sensitivity Analysis.  

 

 
Figure 28: Control Simulation (no data assimilation): Total runoff for Jugiong catchment 

 

Again looking at Figure 32, the updated total runoff, it can be seen that the ensemble 

spread is very much reduced compared to the control simulation. This is because every 

ensemble member is updated with the available observation and thus the variance of the 

ensemble members reduces at the update point.  

 

Similarly, the hydrological model states update for both sub catchments is illustrated in 

Figure 33 and Figure 34. Looking at the update for Jugiong sub-catchment, the peaks 

are simulated better than the open loop. The recession part of the hydrograph is also 

well captured. For instance, in order to better simulate the peak runoff event in the 

month of June (for Jugiong sub-catchment), the two overland flow reservoirs were 

recharged, root zone storage was increased to up to 80%, interflow was also increased. 

One can also notice that, the updated ground water depth is higher than the one shown 

in the open loop, this accounts for the better simulation of the base flow (recession part 

of the hydrograph). Generally speaking, the open loop (deterministic model run) did not 

pick up the peaks and the base flows accurately, thus it can be said that data assimilation 

improved catchment state estimation. In comparison, the catchment states update for 

Goobarragandra (Figure 34) are much better than that of Jugiong. Generally in all the 
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storages (overland, root zone, interflow etc.) the model simulates more water than there 

is in actuality, which is also evidenced by the overestimation of the runoff by the open 

loop (deterministic model). The updated runoff simulates the peak events as well as the 

low flow events more accurately by adjusting the corresponding storages. For instance 

looking at the peak runoff in June 2014, it is updated by reducing overland flow 

storages, and lowering ground water depth, whereas in the small peak event in the first 

week of August, interflow storage and surface storage were increased to adjust to the 

observed runoff.    

 

 
Figure 29: Control Simulation (no data assimilation): Total runoff for Goobarragandra catchment 
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Figure 30: Control simulation for the hydrological model states - Jugiong sub-catchment 
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Figure 31: Control simulation for the hydrological model states - Goobarragandra sub-catchment 
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Figure 32: Updated total runoff for Jugiong (top left) and 

Goobarragandra (bottom left) and comparison of statistical analysis for 

both updates 
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Figure 33: Updated hydrological states for Jugiong sub-catchment 
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Figure 34: Updated hydrological states for Goobarragandra sub-catchment 
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6.3 Forecasting and Verification  

In order to test the performance of the data assimilation, a series of simulated forecast 

experiments was made following the implementation of data assimilation. The forecast 

experiment is done for the Goobarragandra sub-catchment. Total runoff for this sub-

catchment was forecast. Note that this is not a real time forecast since observed 

precipitation was used as forcing in the model instead of a forecast precipitation. The 

forecast total run off is verified by comparing it with the observed total runoff 

(discharge). The skill of forecast based on data assimilation was compared with the 

open loop (deterministic run) and skill scores were computed. The forecasting 

procedure is based on the methodology explained in 5.5; observed discharges were 

assimilated for the August 2012 to February 2014 period and a series of 245 forecasts 

were generated as of June 2013. The forecasts were made daily for 8 months each with 

a lead time of 7 days.  

 

The series of forecasts was verified in two different ways; deterministically by 

comparing the mean of the ensembles against the observation and probabilistically 

comparing the whole ensemble against the observation using the appropriate 

verification method. RMSE and CRPS scores as well as skill scores were computed for 

deterministic and probabilistic verification. The forecasts were compared with the 

deterministic model run (open loop) in order to compute the forecast skill scores  

 

Figure 35 shows the evaluation of the 245 simulated forecasts. The skill scores of the 

runoff forecast represented by RMSES and CRPSS indicate that the total runoff at the 

catchment outlet can be forecast with a reasonable accuracy. In addition the good 

accuracy persists for longer periods. Assumuing that there is no uncertainty coming 

from forecast precipitation (since observed precipitation is used), a deterministic 

forecast made after data assimilation is at least 50% more skillful for a lead time of 4 

days than the forecast made without data assimilation as shown by the RMSE skill 

score. Whereas an ensemble forecast made after data assimilation is at least 70% more 

skillful for the entire 7 days lead time as evidenced by the CRPS skill score.  

 

6.4 Sensitivity Analysis  

The sensitivity analysis was done in two phases; the first phase is to find the optimum 

ensemble size that fulfils both the computational and forecast accuracy requirements of 

the data assimilation. The second phase is to find the “best6” combination of filter 

parameters that represent the forcing and the observation uncertainty for a specific sub-

catchment.  

6.4.1 First Phase of Sensitivity Analysis 

The first phase of the sensitivity analysis, is devoted to investigate the sensitivity of the 

data assimilation filter as well as the forecasts that are following data assimilation, with 

respect to ensemble size. Thus ensemble sizes ranging from 10 to 150 were chosen and 

DA was implemented followed by a series of ensemble forecasts. 

 

                                                 
6 This best filter parameters are unique to the chosen sub-catchment; they will not apply to other sub-

catchments 
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Figure 35: Forecast RMSE (top left), CRPS (top right), RMSES (bottom left), and CRPSS (bottom right) for Goobarragandra catchment  
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The mean RMSE of the ensemble forecasts was computed as a function of lead time 

which is shown in Figure 36. Figure 37 depicts the average 1 day, 3 days, 5 days and 7 

days RMSEs for the different ensemble sizes. It can be seen that even though the 

forecast RMSE does not change significantly, it is reduced with increase in ensemble 

size. However, the RMSE starts to show a slight increase when more than 100 ensemble 

members are used. On the other hand, looking at the computational time required to 

perform ensemble simulations for the different ensemble sizes, it can be seen that the 

computational time increases non-linearly. Table 6 shows the computational time 

required to propagate the ensemble members on forecast mode for 30 days. But in 

general, considering the insignificant difference in forecast RMSE when using different 

ensemble sizes and taking into consideration the large amount of time it takes to run the 

forecast as the ensemble size increases, an optimal ensemble size of 20 is chosen for the 

sensitivity analysis as well as for the rest of the study. 
 

Table 6: Amount of time (min) it takes to propagate the different ensemble members in forecast 

mode  

Ensemble Size 10 20 50 70 100 150 

Run-Time (min) 7 10 22 27 38 70 

 

6.4.2 Second Phase of Sensitivity Analysis 

Several combinations of different filter parameters were selected to run the sensitivity 

analysis. There are several filter parameters the value of which can be altered, however, 

this was limited to only three of them, viz. forcing uncertainty (quantified by standard 

deviation), forcing half-time constant (hours), and observation uncertainty (standard 

deviation). The three filter parameters were chosen after a broader sensitivity analysis 

which included all the filter parameters. It was found that the above three variables had 

stronger correlation with forecast error and thus, they were chosen for further 

investigation. Based on the procedures explained in detail in 5.6, for every combination 

of filter parameters data assimilation was done for the March to August 2013 (6 months) 

period followed by a sequence of 30 daily forecasts with a lead time of 7 days starting 

on July 15, 2013 (time of forecast). Then RMSE and CRPS scores for the forecasts are 

computed as a function of lead time and these scores are compared for every 

combination of filter parameters chosen at the outset of the sensitivity analysis. The 

combination which brings forth the lowest RMSE & CRPS scores is considered to 

represent the model and observation error in a better way and thus will be chosen as the 

“best” combination of filter parameters.   

 

The filter parameters for the observation and the forcing (precipitation) are varied to 

represent different error magnitudes. To this end, 96 cases are designed with the 

combination of different values of the three filter parameters as shown in Table 7. 

 
Table 7: Filter parameter ranges for sensitivity analysis 

Filter Parameter Range Remark 
Forcing Uncertainty 0.1 – 0.8  Standard Deviation (0.1 increment) 

Forcing Half-Time constant 2, 4, 8, 16 Hours 

Observation Uncertainty 0.05 – 0.15 Standard Deviation (0.05 increment) 
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  Figure 36: Forecast error as a function of lead time for different ensemble sizes 

Figure 37: Average RMSE of forecasts for different ensemble sizes 
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This part of the analysis is carried out in two steps, first the data assimilation filter 

parameters will be calibrated or tuned to find the best forecast results for a chosen 

calibration period (March – August 2013) as shown in Figure 38 and data assimilation 

will be implemented on another period to validate its performance on forecast accuracy. 

The full result of the above analysis is displayed in appendix A with Figure A 1 and 

Figure A 2, the cases with the lowest RMSE and CRPS are chosen as the best cases and 

are taken for further investigation. The cases that led to the lowest forecast error verified 

by RMSE and CRPS are shown in Table 8. 
 

Table 8: Best filter combination with low forecast errors (forcing and observation uncertainty are 

standard deviation values) 

Case 
Forcing 

Uncertainty 

Forcing Half-

Time constant 

Observation 

Uncertainty 

Case 28 0.4 16hrs. 0.05 

Case 32 0.8 16hrs. 0.05 

Case 63 0.7 16hrs. 0.10 

Case 93 0.5 16hrs. 0.15 

Case 95 0.7 16hrs. 0.15 

In order to select a single case for further implementation of data assimilation, the 

average RMSE for 1 day, 3 days, and 7 days was computed for the above cases and case 

63 came out to be the best solution (results are displayed in Figure A 3). From the 

analysis, one can learn that the forcing uncertainty obtained from the sensitivity analysis, 

is very large (70%). This indicates that the precipitation observed in this specific 

catchment (Goobarragandra) has a considerable uncertainty. 

 

 
Figure 38: Calibration period for sensitivity analysis 

 

After selecting the filter combinations represented by case 63 (refer to Table 8), the 

newly configured data assimilation scheme was tested. Thus a validation period (shown 

in Figure 39) from January 2013 to December 2014 is chosen and data assimilation was 

applied followed by the consecutive forecasts of one year each with a lead time of 7 

days. The forecasts are then verified using RMSE and CRPS. Skill scores of the 

forecasts are also calculated with the open loop (deterministic run) being the reference 

simulation. 
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Figure 39: Validation period for sensitivity analysis 

 

Figure 40 shows the graphical representation of DA in red, observations in blue, 

ensemble members in grey, the deterministic run (open loop) in black and the 7 day 

forecasts in green after the application of DA for the validation period. It can be seen 

that almost all the time the forecasts are performing better than the open loop simulation. 

Full results of the analysis are depicted in Figure 41; for instance looking at the first 24 

hours of forecast, according to RMSE results, the forecasts made after applying DA are 

55% more skilful than the open loop run. Whereas CRPSS results tell that for the first 

24 hours, the forecasts are 82% more skilful than the forecast made with the open loop.  
 

 

Figure 40: Sequence of forecasts made in the validation period 
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Figure 41: RMSE (Top left) and CRPS (Top right) of 1 year forecast on validation period, RMSES (lower left) and CRPSS (lower right) skill score of forecast  
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6.5 Hydrodynamic model states update 

6.5.1 Model Area 

 
Figure 42: Murrumbidgee catchment and the subdivision into eleven sub catchments. Gauging 

stations are also shown in white and red circles 

 

The model domain for the hydrodynamic model states update covers the upstream part 

of the Murrumbidgee catchment. Eleven rainfall-runoff sub catchments (marked green 

in Figure 42) were chosen for this specific study. These catchments feed the 

Murrumbidgee River and two other tributaries. The precipitation used for each 

catchment is the result of the mean area weighting of precipitation measured in multiple 

gauges within the sub-catchments. As outlined in Table 9, in-situ discharges from four 

gauging stations, (white circles) in Figure 42 are used for assimilation, whereas 

discharge observation downstream of the sub catchments, (yellow circle, at Gundagai), 

is used for validation of the assimilation.  

 
Table 9: Gauging stations used for assimilation and validation 

ID Gauging 

Station 

Placed at River  Q-chainage Remark 

410068 Glendale HD inlet Murrumbidgee 17398.61 Assimilation 

410195 U/S Gobarra HD inlet Murrumbidgee 84561.01 Assimilation 

410039 Brungle Bdge Branch connection Tumut 61400 Assimilation 

410006 Tumut HD inlet Tumut 25434.98 Assimilation 

410004 Gundagai HD inlet Murrumbidgee 117646 Validation 
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6.5.2 Major Peaks 

The discharge at the outlet of the model domain, which is at Gundagai was studied to 

identify major peak events. Data assimilation will be implemented for the (2013 - 2016) 

period in order to reduce the uncertainty when predicting the major peak events. Table 

10 shows the details of the selected peak events. The precipitation peak is representing 

the rainfall intensity of all the sub-catchments within the model domain. 
 

Table 10: Major peak events at Gundagai station (2013 - 2016) 

 Jul 2013 Dec2013 Apr 2014 Jun 2014 

Observed Peak 

(m3/s) 
97.62 186.01 51.27 114.94 

Peak Time Jul 20 Dec 24 Apr 13 Jun 25, 27 

Precipitation 

Peak Time 
Jul 16, 20 

Dec 23 Apr 11 Jun 24 

Precipitation 

Peak (mm/hr) 
62.74 

11.22 20.678 33.38 

 Oct 2014 Jul 2015 Aug 2015 Sep 2016 

Observed Peak 

(m3/s) 
182.69 94.06 187.21 

749.57 

Peak Time Oct 03 Jul 23, 25, 28 Aug 26 Sep 22 

Precipitation 

Peak Time 
- Jul 22, 25 Aug 24 

Sep 21 

Precipitation 

Peak (mm/hr) 
- 29.42 22.28 

34.56 

 

6.5.3 Analysis Parameters 

After choosing the major peaks, data assimilation was implemented with the error 

parameters obtained from the sensitivity analysis in 6.4. The filter parameters found in 

6.4 were unique to the Goobarragandra sub-catchment, however, due to time constraints 

the error parameters obtained for the Goobarragandra sub-catchment in Table 8 are 

assumed to be the same for all the other sub-catchments too. Perturbation of 

precipitation is sampled from a Gaussian distribution of N(0, (0.7*P)2) where P is the 

precipitation value. Spatial correlation of catchment rainfall was activated in the data 

assimilation scheme. Perturbation of observed discharge is sampled from a Gaussian 

distribution of N(0, (0.1*O)2), where O represents the observed value. In order to 

account for the temporal correlation of the forcing errors, a first order autoregressive 

model is used as explained in 5.3.1  and a half-time constant of 16 hrs is used as 

obtained from the sensitivity analysis. Data assimilation was applied for the 2013 to 

2016 period and the graphical representation of the DA is shown in Figure 43.  

  

It can be seen from Figure 43 that compared to the open loop, the performance of the 

data assimilation is significantly better. For most of the peak events, RMSE, MAE, and 

PBIAS statistics were reduced especially for the June 2013, July 2015 and August 2015 

peak events as shown in Figure 45.  However for the peaks in December 2013 and 

October 2014, the data assimilation did not improve the simulation. The reason for the 

poor performance of the data assimilation in these events is because the duration of 

rainfall is very much short (for the October 2014 event, there was no precipitation 

recorded) compared to the other events.  Besides the flow during these periods is mostly 

governed by flow from the two reservoirs upstream. Thus the forcing cannot be 

perturbed appropriately and its uncertainty cannot be defined properly which leads to 

inadequate assimilation result. 
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Figure 43: Implementation of data assimilation on the major peaks 
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6.5.4 Streamflow Forecast 

Here it is intended to evaluate the effect of updating only hydrodynamic states on 

stream flow prediction. Forecasting strategy is the same as the one explained in 5.5.    

Before the forecast is made, the observed discharge measurements in the 4 locations 

(refer Figure 42) are assimilated for the period of May 2013 to December 2016. 

Following the assimilation, daily forecasts were issued as of May 2014 for one year 

with a lead time of 7 days, giving a sequence of 365 forecasts. The discrepancy of the 

forecasts from the measured discharges is quantified by RMSE and CRPS statistics as a 

function of forecast lead time. In addition skill scores are computed for the forecasts.  

Figure 44: Improvement of statistical errors for the eight major peaks after DA  
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Figure 45: Verification of forecast based on HD update as a function of lead time 
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Figure 46: Comparison of forecast skills in high-flow (the top-most plots) and low-flow periods (bottom plots) for HD update 

The one year forecast was separated into high-flow period and low-flow period in order to study the impact of data assimilation in the two periods. The top-most 

plots in Figure 46 represent the skill of the forecasts during the high-flow period whereas the bottom-most plots are showing the skill of the forecasts for the low-

flow period. Comparing the forecast skills for the two periods, one can see that during the high-flow period (dominated by precipitation events) skilful forecasts 

can be made up to 48 hrs. However, during the low-flow periods skilful forecasts could be made up to only 12 hrs. This could be explained by the fact that, 

during the low-flow period (which is mainly governed by reservoir releases), there is not enough precipitation; which makes it difficult to represent the hydro-

meteorological uncertainty using the ETKF. Hence the data assimilation and forecasts experiments are unsatisfactory. 
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Looking at Figure 45, one can notice that the forecast RMSE statistic deteriorates 

dramatically within the first 12 hours after which it saturates to an RMSE of 25 m3/s. 

Similarly CRPS statistic deteriorates within the first 24 hours. Discrepancies between 

forecasts and observed values increases with lead time. RMSE and CRPS skill scores 

depreciate drastically within the first 24 hours, meaning its better off using the 

calibrated model (without data assimilation) than implement data assimilation for 

forecast lead times longer than 24 hours. Thus, updating only the hydrodynamic states 

has improved the forecasts until a lead time of 24 hours tops. This could be because the 

hydrodynamic update improves the subsequent forecasts only for the duration 

corresponding to the travel time of the flood wave. Thus the effect of updating the river 

states on subsequent forecasts is only transient. 

 

6.6 Hydrodynamic-Hydrological model states update 

This part of the study discusses the results obtained after implementing a combined 

hydrodynamic-hydrological model state updating. In this case, both the catchment and 

the river states will be updated by assimilating available discharge observations. Table 

11 outlines the details of the gauging stations. The model forcing (precipitation) is 

perturbed according to the error parameters selected in 6.5.3. The difference between 

the combined update and the hydrodynamic update is that, the ensemble (generated by 

perturbing the precipitation) will be updated using available observation in catchment 

outlets thereby reducing the hydrological uncertainty. As opposed to the hydrodynamic 

update, inherent hydrological uncertainty will not be propagated as the river is routed 

downstream. 

 
Table 11: Gauging stations used for assimilation and validation in the combined update 

ID Gauging 

Station 

Placed at River  Q-chainage Remark 

410068 Glendale HD inlet Murrumbidgee 17398.61 Assimilation 

410195 U/S Gobarra HD inlet Murrumbidgee 84561.01 Assimilation 

410039 Brungle 

Bdge 

Branch 

connection 

Tumut 61400 Assimilation 

410006 Tumut HD inlet Tumut 25434.98 Assimilation 

410044 Coolac Catchment outlet Muttama Creek 0 Assimilation 

410114 Wyangle Catchment outlet Killimcat Creek 0 Assimilation 

41000269 Redhill Catchment outlet Brungle Creek 0 Assimilation 

410059 Gilmore Catchment outlet Gilmore Creek 0 Assimilation 

410038 Adjungbilly 

Dbalara 

Catchment outlet Adjungbilly 

Creek 

0 Assimilation 

410025 Jugiong Catchment outlet Jugiong Creek 0 Assimilation 

410057 Gndra 

Lacmalac 

Catchment outlet Goobarragandra 

river 

0 Assimilation 

410004 Gundagai HD inlet Murrumbidgee 117646 Validation 

 

The same major peak events shown in Table 10 are used to test the performance of the 

data assimilation for the combined update. The results of the combined update on the 

major peaks is shown below in Figure 47.  
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Figure 47: Assimilation results after combined HD+RR update 
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Comparing the assimilation results of the hydrodynamic update with the combined 

update, one can see that the recession part of the hydrograph was improved for the Jul 

2013, Apr 2014 and Aug 2015 peak events. The peaks in Apr 2014 and the three peaks 

of Jul 2015 were reproduced very well after the combined update. However, the August 

2015 peak event was slightly over-estimated even though the mis-phasing problem was 

solved after the combined update. As expected the dry period events of Dec 2013 and 

Oct 2014 where the flow is dominated by reservoir release saw no improvement after 

the combined update. Another interesting difference is the ensemble spread; comparing 

the hydrographs for the two updates in Figure 43 and Figure 47, it can be seen that the 

ensemble spread is comparatively low after the combined update meaning there is 

relatively less uncertainty in streamflow simulation after hydrological-hydrodynamic 

update. This is because the inherent meteorological uncertainty (arising from 

uncertainty in precipitation estimation) was reduced when the six hydrological model 

states were updated. Thus less uncertainty was propagated from the rainfall-runoff to 

towards the river routing.  

 

 
 

Figure 48: Improvement MAE & RMSE after combined HD+RR update 

 

Overall, after the combined HD+RR update there was a significant improvement 

compared to the HD only update in the error statistics. The MAE and RMSE statistics 

for instance, were very much reduced after the combined update as shown in Figure 48. 

The RMSE statistic for the Apr and Jun 2014 peak events was for instance reduced by 

almost 60% after the implementation of the combined update. On the contrary, the Dec 

2013 and Oct 2014 events saw a deterioration in both MAE and RMSE statistics.  

 

Another experiment was done to further test the performance of the combined HD+RR 

update. Before assimilating the observed discharges, a small chunk of observed data 

was deliberately omitted from the observation time series and the update was done 

separately on HD and HD+RR schemes. This was done to test how far would the update 

go before deteriorating to the open loop. In other words, in order to test the longevity of 

the HD and HD+RR updates. Results are shown in Figure 49, it’s interesting to see that 

in the HD only update, as soon as the observations are omitted, the MainModel (marked 

by red) quickly reverts back to the open loop simulation (deterministic run without data 

assimilation) at both the high and low flow events. 
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Figure 49: Top left and right show the HD update results with missing observations (purple) and bottom left and right show the HD+RR update results with missing observations 
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Figure 50: Verification of hindcast results based on HD+RR update as a function of lead time 
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Similar to the plots shown in Figure 46, the one year forecast that was made after HD+RR update was separated into high-flow and low-flow periods. The 

forecast skills were calculated (RMSES and CRPSS). The top row of plots in Figure 51 represents the skill of the forecasts made during the high-flow period 

and the bottom row of plots represent the skill of the forecasts for the low-flow period. During the high-flow period, skilful forecasts can be made for up to 96 

hrs lead time, however, for the low-flow period it’s only about 12 hrs. This is owing to the very low precipitation events in the low period. This makes it 

difficult to accurately represent hydro-meteorological uncertainty using the ETKF since there is very little precipitation of the ensembles to perturb.       

Figure 51: Comparison of forecast skills in high-flow (the top-most plots) and low-flow periods (bottom plots) for HD+RR update 
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However, during the combined HD+RR update, one can see that the updating effect 

lasts much longer especially during the low flow periods. This could be due to the fact 

that catchment hydrological memory does not change as rapidly as the states in the river 

and since the combined update adjusts the catchment states to their “true” states, the 

effect of the update persists longer than just the HD update only. 

 

6.6.1 Streamflow Forecast 

Similar to the HD only update, the performance of the combined update needs to be 

tested by generating a series of forecast experiments. The forecasts were done on the 

same period as for the HD only update in order to compare results. Eventually the 

forecasts were evaluated with the verification methods and forecast skill scores were 

calculated accordingly. Figure 50 shows the forecast results for the HD+RR update; 

generally speaking the forecast RMSE and CRPS are lowered compared to the case of 

HD only update. The maximum forecast RMSE score was reduced to 22.5 m3/s 

(HD+RR) from 25m3/s (HD), whereas the maximum forecast CRPS score was reduced 

to 9 m3/s (HD+RR) from 10.5 m3/s (HD). Moreover, the RMSE and CRPS statistics 

degrade less rapidly as opposed to the drastic deterioration observed in HD only update 

(refer Figure 45). The forecast skill scores illustrate that there is a significant 

improvement; for instance looking at the RMSES results, the deterministic forecasts 

were more skillful than the reference simulation for the first 96 hours, which is 

additional 72 hours as compared to the HD only update. CRPS skill score tell that the 

ensemble forecasts made after HD+RR update are at least 30% more skillful for the 

entire 7 days lead time. 

 

Thus, it has been shown that updating both hydrological and hydrodynamic model states 

improved the deterministic forecasts (looking at RMSES results, taking the mean of the 

ensemble as a deterministic forecast) up to a lead of 96 hours (4 days) and ensemble 

forecasts (looking at CRPSS results) for the entire 7 days lead time. This implies that 

due to the combined update, the lead time for skillful forecasts was extended 

significantly (from 48hrs to 96hrs, RMSES). This extension of forecast lead time was 

achieved as follows; by updating the catchment states the catchment runoff can be 

forecast with reasonable accuracy up to the time of concentration. Further downstream 

when the catchment runoff is routed along the river and gets updated by the available 

river discharge, streamflow can be forecast with a reasonable accuracy up until the flood 

wave travel time. Thus, by updating both states, the lead time for skillful forecasts was 

extended by the time of concentration. This will come in handy in flood forecasting as 

well as reservoir operating systems within the Murrumbidgee catchment.   On the other 

hand hydrodynamic updates can produce skillful forecasts within the time frame of 

flood wave travel time.     

 

Figure 52 is showing the comparison of forecast accuracy and skill for the first 48 hours. 

Regarding the accuracy measured by RMSE and CRPS, the HD+RR forecasts show 

lower forecast errors on average 28% lower RMSE compared with the HD forecasts. 

Similarly HD+RR forecasts have on average 22% lower CRPS as compared with the 

HD forecasts. Looking at the forecast skill scores, one can see that for the first 48 hours 

only, the HD+RR forecasts are 23% (RMSES) and 18% (CRPSS) more skilful than the 

HD forecasts.  This suggests that streamflow forecasts and more importantly floods can 

be forecast with a reasonable accuracy for larger lead times.  
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Figure 52: Forecast skill Comparison for HD and HD+RR update 
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7. Conclusions 

The main objectives of this study were the following: investigating the potential benefit of 

combined hydrological-hydrodynamic update on streamflow forecast improvement; 

optimizing the data assimilation filter parameters for improved forecast; and studying the 

potential of using satellite precipitation products for rainfall runoff modelling. To this end, 

the following conclusions were reached: 

1. Rainfall-runoff processes can be represented at large using daily satellite rainfall 

estimates, however major peak events were not captured rendering the rainfall 

products unsuitable for flood forecasting/reservoir management systems. 

 Three satellite rainfall products (TRMM, CHIRPS, & PERSIANN) with daily 

temporal resolution were studied for an alternative precipitation as a substitute 

for in-situ rainfall data. Raw satellite data had very low correlation with in-situ 

rainfall data. Almost all the three products underestimate/miss the rainfall 

compared to the in-situ rainfall data. Comparatively speaking raw CHIRPS had 

better correlation (r = 0.61). On the contrary, raw PERSIANN product has 

several gaps and highly underestimates the rainfall. 

 It was noted that the daily temporal resolution of the satellite products is not 

suitable to simulate the rainfall-runoff process for the sub-catchment since the 

sub-catchment responds more frequently than a daily time scale and thus daily 

rainfall data cannot capture the episodic events caused by moderate/high intensity 

rainfall.  

 Bias correction factors were calculated and the satellite products were corrected 

after which better correlation was achieved. The bias corrected rainfall products 

were used to re-calibrate the hydrological model for a specific sub-catchment.   

 A rainfall-runoff simulation was done for the (2013 to 2016) period using the 

bias corrected rainfall products. It was shown that the rainfall-runoff process can 

be represented at large, the model forced with bias corrected CHIRPS product 

even reproduced some parts of the observed hydrograph. However, the major 

peak events were severely underestimated. As a result, the daily satellite rainfall 

products were regarded as unsuitable for flood forecasting/reservoir management 

systems. Thus, for the purposes of flood forecasting/reservoir management 

systems in the Murrumbidgee catchment it is better to use in-situ rainfall data. 

Perhaps for sub-catchments with poor gauge distribution or no gauges at all, the 

satellite rainfall estimates can be an excellent alternative source of rainfall data.   

2. Appropriate filter parameters were optimized for a specific sub-catchment in such a 

way that the hydrological forecast errors are minimized.  

 An ensemble size sensitivity analysis showed that optimal results can be 

achieved with an ensemble size of 20 members. The tradeoff between sampling 

error and computational expense was balanced with the optimal ensemble size. 

Increasing ensemble size did not show significant improvement in forecast while 

the computational time soared with increased in ensemble size. 
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 Forcing uncertainty (precipitation uncertainty) was found to be the most 

dominant filter parameter since it is highly correlated with streamflow forecast 

errors. 

 For the case of Goobarragandra sub-catchment, precipitation forcing uncertainty 

of 70%, half-time constant of 16 hrs. and observation uncertainty of 10%  were 

found to be the best combination of filter parameters that minimized the forecast 

error.  

3. Hydrological-hydrodynamic model states update improved streamflow simulation and 

forecasts.  

 Updating the hydrodynamic model states alone or together with the hydrological 

model states improved streamflow simulation as well as streamflow forecast. 

Updating the hydrodynamic states alone corrected volumetric errors as well as 

phase errors of the hydrographs for the selected eight major peak events. 

Simulation error statistics were also improved after the update. Skillful 

deterministic forecasts (better than just using the calibrated model for forecast) 

could be made up to a lead time of 48 hours. Whereas skillful (at least 10% more 

skillful) ensemble forecasts could be made for the entire 7 days lead time.  

 Similarly updating both the hydrodynamic and the hydrological model states 

improved the simulation and forecast of streamflow. Simulation error statistics 

for some of the peak events were reduced by up to 60% compared to updating the 

hydrodynamic states alone. An updating experiment where observations were 

deliberately removed showed that, the effect of the combined states update 

persisted longer compared to the hydrodynamic states update alone. It was 

possible to make skillful deterministic forecasts up to a lead time of 96 hours; 

whereas skillful (at least 30% more skillful) ensemble forecasts could be made 

for the entire 7 days lead time. Looking at 48 hours lead time alone, deterministic 

forecasts based on combined states update are on average 23% more skillful than 

the forecasts that are based on only hydrodynamic states update. Similarly the 

ensemble forecasts are 18% more skillful than their counterparts. 

 Even though hydrodynamic states update alone improved streamflow forecast, 

comparatively speaking its effect was only transient. This is due to the fact that 

the effect of hydrodynamic states update persists only within the flood wave 

travel time. On the other hand, the effect of combined states update persists 

within the duration which is the sum of concentration time and flood wave travel 

time. Thus the combined states update has extended the lead time for skillful 

forecasts by time of concentration. This will come in handy for flood forecasting 

systems and reservoir operation systems in Murrumbidgee catchment. 

 

 The impact of the two different data assimilation methods on streamflow 

forecasts was further investigated for high-flow and low-flow events. The high-

flow period is governed by moderate/high precipitation events, whereas the low-

flow period is governed by reservoir releases from the two dams upstream. The 

skill of streamflow forecast during the high-flow period is satisfactory for up to a 

lead time of 48 hrs. (after HD only update) and 96 hrs. (after HD+RR update). 

On the other hand, during the low-flow period the skill of streamflow forecast 
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deteriorated just after 12 hrs. The poor streamflow forecast skill during the low-

flow period is due to the fact that there is very little precipitation. In this case the 

ETKF cannot quantify the hydro-meteorological uncertainty appropriately.  
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8. Limitation of the study and further recommendation 

1. A sensitivity analysis was carried out to find the filter parameters that represent the 

forcing precipitation and observation uncertainty accurately. However, this analysis 

was done for only one of the sub-catchments in the model domain. Due to the 

shortage of time, the optimal filter parameters which are unique to the sub-

catchments were used for the other ten sub-catchments when the hydrodynamic-

hydrological model states updating were done. This however will not give the best 

results since each sub-catchment has its own unique precipitation and measurement 

uncertainty. Thus, for future studies, it is better to run the sensitivity analysis for all 

the sub-catchments so that the forcing and observation uncertainty can be defined for 

each sub-catchment appropriately. 

2. Regarding the representation of the precipitation forcing uncertainty, it was shown 

that a first order autoregressive error model was used to perturb the forcing. Besides, 

the temporal and spatial correlation of the errors was considered. However, it was 

found later in the study, that when there was no observed precipitation, the ensemble 

members are set to zero (first order autoregressive error models are used). This 

approach as noted by (Maggioni et al., 2017) does not represent precipitation errors 

appropriately. For future research and development, it is recommended to use more 

advanced precipitation error models.  

3. Comparative study was done on rain gauge rainfall data and three satellite rainfall 

products in pursuit of a precipitation product with less uncertainty. The daily time 

scale comparison showed that the satellite products severely underestimate 

precipitation. The rainfall-runoff simulation using the satellite products didn’t 

capture major events.  The daily temporal resolution is not adequate enough to 

capture the dynamic runoff process in the catchment to the required accuracy. It is 

recommended that finer temporal resolution satellite data should be used for rainfall-

runoff modelling as well as data assimilation/forecast experiments. In addition, the 

potential of radar data should be explored for future data assimilation experiments.                             

Besides, advanced bias correction methods can be applied to fully exploit the data 

rich remotely sensed precipitation products.  

4. In order to quantify model uncertainty, in this study, only model forcing was 

perturbed to generate the ensembles in order to study the effect of forcing uncertainty 

on streamflow forecast. This methodology assigns that model uncertainty is mainly 

due to forcing uncertainty. However, for future studies, both forcing and model state 

perturbation should be incorporated.  

5. Observed precipitation was used for all the data assimilation and forecast 

experiments. Thus, the streamflow forecasts are not influenced by uncertainty from 

forecast precipitation. But operational forecasting needs forecast precipitation as one 

of the main inputs. Thus for future studies, forecast precipitation should be used for 

the data assimilation experiments.  

6. Time didn’t allow for the implementation of more verification methods to evaluate 

the performance of the ensemble forecasts. Therefore, it is recommended to 

implement several verification tools to evaluate the forecasts in depth. 
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10. Glossary 

1. Adaptive localization:  

2. Autoregressive model: 

3. Background Error Covariances 

4. Correlation Length Scale (L): 

5. Decorrelation time:  

6. Filter Divergence:  

7. Filtering/Filter: The process of finding the “best estimate” from noisy data amounts 

to “filtering out” the noise  

8. Fractional Error: 

9. Hotstart: 

10. Inflation: 

11. Localization: used to reduce spurious correlations 

12. Noise (Error) Models: 

13. Perturbation: 

14. Spatial and Temporal Correlation of errors 

15. Spurious Correlation: when the correlation cannot be properly described by the 

ensemble of models, having a detrimental effect on the filter performance 

(J.Rasmussen et al., 2015) 

16. State Vector: a collection of the variables we are interested to update the model state 

17. Warm-up period: A model might need this to reach its balanced state (from the 

poorly known initial conditions) 

18. White Noise:  

19. Filtering: 

20. Smoothing:   

21. Control Simulation:  

22. Open Loop Simulation: 

23. MainModel: 

24.  
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Appendix 
 

 
 

 Figure A 1: Forecast RMSE for different combination of filter parameters 
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Figure A 2: Forecast RMSE for different combination of filter parameters 
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Figure A 3: Average RMSE for 1 day, 3 days, and 7 days for the 5 best cases. On the x axis the three filter parameters 

are represented, y axis represents forecast RMSE 
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Figure A 4: Scatterplot of bias corrected satellite rainfall estimates Vs rain gauge rainfall (Pearson 

correlation statistic was improved after bias correction) 


